
Balau core C++ library

User manual

Version 2019.7.1

Bora Software

ii

Copyright 2008 Bora Software (contact@borasoftware.com)

https://borasoftware.com

Bora Software is a trading name of Bora Ltd, UK company number 06859743

Bora® and the Bora logo are registered trademarks in the European Community, the United

States of America, and other countries.

iii

CONTENTS

Balau core C++ library . 1
Overview . 1

Links . 1

Intended audience . 1

Themes . 2

Documentation pages . 3

Developer manual . 3

API documentation . 3

Dependencies . 3

Application structure . 4

License . 4

Supported platforms . 4

C++ version . 4

Operating systems . 4

CPU architectures . 5

Building . 5

Contributing . 5

APPLICATION . 7

Injector . 8

Overview . 8

Introduction . 8

Dependency injection . 8

Balau injector . 8

Quick start . 10

Application configuration . 10

Environment configuration . 13

Injection macros . 13

Injector usage . 16

Child injectors . 17

Configuration . 18

Injector configuration . 19

Reference bindings . 23

Const bindings . 23

Injectable classes . 23

Inject-construct macros . 24

Inject only macros . 25

iv

Inject types macros . 27

Instantiation . 28

Injector . 28

Instances . 29

Const bindings . 30

Const promotion . 31

Weak promotion . 32

Custom deleters . 32

Unique custom deletion . 32

Shared custom deletion . 33

Injector hierarchies . 34

Child injector creation . 34

Prototype child injectors . 35

Injector callbacks . 35

Standard callbacks . 35

Singleton callback . 36

Cyclic dependencies . 37

Configuration cycles . 37

Explicitly managed cycles . 37

Injecting the injector . 38

Injector cycles . 39

Configuration testing . 41

Root injectors . 41

Child injectors . 42

Logging . 42

Design . 43

Overview . 43

Background . 43

Meta-design . 44

Design . 45

Meta-types . 45

Const promotions . 48

Performance . 48

Planned C++20 features . 49

Environment configuration . 51

Overview . 51

Introduction . 51

Usage patterns . 52

Quick start . 53

v

Properties . 53

Hard wired specifications . 53

IDL based specifications . 54

Mixed specifications . 55

Default values . 55

Application creation . 56

Injector . 56

Application . 58

Credentials . 58

Property type IDL . 58

Configuration cascading . 61

Example configuration . 62

Design . 64

Overview . 64

Background . 65

Requirements . 65

File format . 66

Specification files . 66

Value files . 66

Configuration cascading . 67

No required properties . 68

Overview . 68

Analysis . 68

Alternatives . 69

Logger . 71

Overview . 71

Quick start . 71

Logging messages . 71

Logger references . 73

Logging configuration . 73

Usage . 74

Configuration . 74

Logger instances . 75

Startup and shutdown . 76

Logging messages . 76

Logging namespaces . 78

Configuration file . 79

Overview . 79

Configuration macros . 79

vi

The date placeholder . 80

Basic usage . 80

Date options . 81

Configuration options . 81

Logging level . 82

Format specification . 82

Flush . 83

Stream specifications . 83

Logging stream plugins . 85

Design . 86

Overview . 86

Concurrency . 87

Test runner . 89

Overview . 89

Quick start . 89

Test groups . 90

Test application . 90

Selecting tests . 91

Execution models . 92

Defining tests . 92

Test groups . 92

Setup and teardown . 94

Assertions . 96

Comparisons . 96

Exceptions . 97

Renderers . 98

Logging . 98

Test output . 98

Test logging . 99

Test reports . 100

Test utilities . 100

Network . 100

Test application . 101

Main function . 101

Selecting tests . 102

Model selection . 102

Execution models . 103

Single threaded . 103

Multi-threaded . 104

vii

Worker process . 104

Process per test . 104

Performance . 105

CI configuration . 106

Characters and strings . 109

Overview . 109

String types . 110

Character utilities . 110

Classification . 110

Iteration . 111

Mutation . 112

Universal to-string . 112

Overview . 113

Signatures . 114

Usage . 114

Container to-string . 115

Parameter pack to-string . 116

To-string template class . 116

Custom allocation . 117

Universal from-string . 117

Signatures . 117

Usage . 118

From-string template class . 118

Command line parser . 121

Overview . 121

Quick start . 121

Style . 121

Configuration . 122

Retrieving data . 123

Help text . 124

Resources . 125

Overview . 125

Quick start . 125

URIs . 125

Resources . 126

URI classes . 126

Resource classes . 128

Recursive iterators . 129

viii

Custom resources . 129

CONTAINERS . 131

ArrayBlockingQueue . 132

Overview . 132

Quick start . 132

Concurrency . 132

DependencyGraph . 133

Overview . 133

Quick start . 133

Construction . 133

Population . 133

Querying . 134

Concurrency . 134

ObjectTrie . 135

Overview . 135

Quick start . 135

Construction . 135

Trie nodes . 136

Searching . 137

Find . 137

FindNearest . 137

FindNearestLeaf . 138

Iteration . 138

Depth first . 138

Breadth first . 139

Cascading . 139

Fluent build API . 140

SharedMemoryQueue . 141

Overview . 141

Quick start . 141

Create . 141

Open or create . 142

Open . 143

Usage . 143

Concurrency . 143

Use cases . 144

Forked processes . 144

ix

Independent processes . 144

SynchronizedQueue . 147

Overview . 147

Quick start . 147

Concurrency . 147

CONCURRENT . 149

CyclicBarrier . 150

Overview . 150

Quick start . 150

Fork . 151

Overview . 151

Quick start . 151

Forking . 151

Termination . 152

Semaphore . 155

Overview . 155

Quick start . 155

SharedMemoryObject . 157

Overview . 157

Quick start . 157

Forked processes . 158

Independent processes . 159

LANG . 161

Parsing utilities . 162

Overview . 162

Approach . 163

Architecture . 163

Scanned tokens . 164

Scanner Api . 164

Random access . 166

Iteration . 166

Scanning . 166

Parsing . 167

Classes . 167

Hierarchical properties . 169

x

Overview . 169

Quick start . 169

Format . 169

Parsing . 171

Visiting . 171

Hierarchical format . 172

Classes . 173

Data structures . 174

Grammar . 175

Notation . 176

Whitespace . 176

Explicit non-terminals . 176

Implicit non-terminals . 177

Terminals . 177

NETWORK . 179

HTTP client . 180

Overview . 180

Quick start . 180

Construction . 180

Usage . 181

HTTP server . 183

Overview . 183

Quick start . 183

Hardwired . 183

Injected . 184

Configuration . 186

Main configuration . 186

Credentials management . 188

HTTP web applications . 189

Overview . 189

Framework . 189

Creation . 189

HTTP session . 189

Client session . 190

Request object . 190

Request variables . 190

Configuration . 190

xi

Web applications . 190

File server . 190

Email sender . 190

Redirector . 191

Canned . 191

Failing . 191

Routing . 192

WebSocket app framework . 193

Overview . 193

Quick start . 193

SYSTEM . 195

Clock . 196

Overview . 196

Quick start . 196

Clock binding . 196

Clock API . 197

Sleep utilities . 199

Overview . 199

Quick start . 199

Thread naming . 201

Overview . 201

Quick start . 201

UTIL . 203

Compression utilities . 204

Overview . 204

Quick start . 204

Gzip utilities . 204

Zipper and Unzipper . 204

Date-time utilities . 205

Overview . 205

Quick start . 205

File utilities . 207

Overview . 207

Quick start . 207

Memory utilities . 209

xii

Overview . 209

Quick start . 209

Pointer containers . 209

Pretty printing . 211

Overview . 211

Quick start . 211

Random number generators . 213

Overview . 213

Quick start . 213

Construction . 213

Usage . 213

Generator types . 213

Uniform distribution . 213

Normal distribution . 214

Templated types . 214

Stream utilities . 217

Overview . 217

Quick start . 217

String Utilities . 219

Overview . 219

Quick start . 219

Examination . 219

Mutation . 220

Manipulation . 220

Vector utilities . 221

Overview . 221

Quick start . 221

Appending . 221

Conversion . 221

Miscellaneous utilities . 223

Introduction . 223

Assert . 223

Enums . 223

Hashing . 223

Macros . 224

OnScopeExit . 224

UUID . 224

xiii

User . 225

App . 225

COMMUNITY . 227

Building Balau . 228

Defaults . 228

CMAKE_PREFIX_PATH . 228

CMAKE_INSTALL_PREFIX . 228

Options . 228

Dependencies . 229

Utility libraries . 229

Debian/Ubuntu . 229

RPM based distributions . 229

ICU . 230

Linux . 230

Windows . 231

Boost . 231

Linux . 231

Windows . 231

CMake variables . 231

CMAKE_PREFIX_PATH . 232

CMAKE_INSTALL_PREFIX . 232

Environment variables . 232

Building Balau . 232

Linux . 232

Windows . 233

Linking . 233

Contributing . 235

Overview . 235

Planned features . 235

License . 235

Repository . 235

Guidelines . 235

General . 236

Testing . 236

Strings . 236

Const correctness . 237

Concurrency . 237

Memory management . 237

xiv

Templates . 238

Macros . 238

Documentation . 238

Code style . 239

Indentation . 239

Files . 239

Identifiers . 240

Spacing . 241

Braces . 241

Horizontal/vertical . 242

Delimiters . 243

Closing brackets . 243

Visibility prefixes . 244

Known issues . 245

Planned features . 247

Platforms . 247

General . 247

File system . 247

Testing . 247

Error reporting . 247

Components . 247

Application . 247

Injector . 247

Environment . 248

Command line parser . 248

Concurrent . 248

Container . 248

Lang . 248

Logging . 248

Network . 248

Resource . 249

System . 249

Testing . 249

Type . 249

Util . 249

Compression . 249

Reporting bugs . 251

Balau core C++ library 1

Balau core C++ library
Overview

Balau is a C++ application framework designed for enterprise quality C++ software

development.

Following the recent revisions of the language, C++ has matured to become an attractive

candidate for rapid enterprise quality application development. Balau provides tools

designed to support the rapid development of high performance C++ enterprise applications.

Balau builds on the foundations of the and projects, and focuses on using modernBoost ICU

C++17 features and the standard unicode string classes.

The library has been conceived for the development of applications that have a dependency

injection based architecture, have complex logging requirements, and will be developed with

a test driven development methodology. Balau has also been designed to provide an

application framework for Unicode aware C++ software applications.

Four key components of the Balau library are the , the injector environment configuration

framework, the , and the . In this respect, part of Balau is a C++logging system test runner

equivalent to the de facto standard Java based application development components

consisting of / for dependency injection and environment configuration, /Guice Spring Log4j

/ for logging, and / for testing.Slf4j Logback JUnit TestNG

In addition to the injector, environment configuration, logger, and test runner, Balau provides

a set of components and utilities with simple APIs, including an HTTP/WebSocket web

application framework.

Links

User manual (this document): .https://borasoftware.com/doc/balau/latest/manual

API documentation: .https://borasoftware.com/doc/balau/latest/api

Main Git repository: .https://github.com/borasoftware/balau

Intended audience

The following questions may be useful in order to determine if the Balau library is suitable for

your requirements.

Do you wish to develop a software application in C++ using modern best practices?

Will the code be based on C++17 or a later specification?

http://www.boost.org
http://site.icu-project.org
https://borasoftware.com/doc/balau/latest/manual
https://borasoftware.com/doc/balau/latest/api
https://github.com/borasoftware/balau

2 Balau core C++ library

Will you be using the Boost libraries?

Do you wish to structure your application via a dependency injection based

architecture?

Do you need to configure the application injector differently for multiple environments?

Do you require a flexible logging system?

Does the development team wish to use a type safe, class based, in process / out of

process test framework?

Does the development team prefer user friendly canned utilities and utility APIs?

Do you require HTTP/WebSocket connectivity and an integrated web application

framework?

Does the development team wish to develop a recursive descent language parser in

pure C++?

Themes

The main themes currently covered by the Balau library are as follows. Documentation for

each component / utility may be accessed from the drop down menu at the top of this page.

dependency injection with application and environment configuration

Hierarchical, typed environment configuration

Logging system, configured via environment configuration

Test framework

Unified to-string functions

Unified from-string functions

Unicode character and string utilities

Unified resource identification and resource access

Data structures

Shared memory data structures

Concurrent data structures

Hand written language parser utilities

Hierarchical property file format and corresponding hand written parser

HTTP/WebSocket clients and server

HTTP/WebSocket web application framework

Balau core C++ library 3

Utilities (system, compression, files, hashing, streams, strings, etc.)

Documentation pages

Developer manual

Each documentation page provided in the top menu contains documentation on the

component or utility, with the following structure:

overview;

quick start guide;

optional detailed documentation sections for complex components;

an optional design discussion.

Application developers should be able to get up to speed on each component / utility by

reading the overview and quick start guide. They can subsequently refer to the detailed

documentation later on when more advanced use of the component / utility is required.

The Balau documentation is written in , and can be loaded directly in a web browserBDML

with the included BDML XSLT stylesheet*, or translated to HTML via the makeBalauManual

target (is required). An HTML translation of the documentation can also be viewedxsltproc

online at .https://borasoftware.com/doc/balau/latest/manual

API documentation

API documentation can be generated by running the make target (isBalauApiDoc doxygen

required). The API documentation can also be viewed online at https://borasoftware.com/doc

./balau/latest/api

Dependencies

In addition to the C++17 standard library, Balau relies on two main third party libraries and

three utility libraries.

The first main dependency is , which provides Unicode support functions. The secondICU

main dependency is the . Boost is used for low level essential utilities andBoost library

complex, low level components not found in the C++ standard library.

The three utility library dependencies are , and . The first two utility librarieszlib libzip curl

provide low level compression support for the compression utilities in Balau. The third utility

library provides network protocol support in the network classes.

The only other dependencies used are standard dependencies on each supported platform.

https://borasoftware.com/specifications/bdml.html
http://xmlsoft.org/XSLT/xsltproc.html
https://borasoftware.com/doc/balau/latest/manual
http://doxygen.org
https://borasoftware.com/doc/balau/latest/api
https://borasoftware.com/doc/balau/latest/api
http://site.icu-project.org
http://www.boost.org

4 Balau core C++ library

Balau includes a small number of third party utility libraries in its source code release. As

these are contained within the Balau source code tree, they are not external dependencies

and thus do not require linkage. These third party libraries are contained within the

 folder. As these libraries are supplied with Balau, application developers can alsoThirdParty

use them directly if required. The libraries have been namespaced within the outerBalau

namespace in order to avoid potential clashes.

Application structure

The high level structure of a software application or library based on Balau is shown in the

diagram below.

License

Balau is licensed under the .Boost Software License Version 1.0

Supported platforms

C++ version

Balau requires a compiler that is compliant with C++17 or a later version of the specification,

with certain exceptions. Notably, guaranteed copy elision is not required (since version

2019.5.1) and is used as a substitute for if boost::string_view std::string_view std::string_view

is not available.

These exceptions allow Balau to be built with the partially C++17 compliant GCC version 6.

Operating systems

Balau has been developed and tested on 64 bit Linux with the GCC and Clang compilers. A

port to Windows 7/10 is planned.

Other Posix compliant platforms that are supported by Boost and ICU may work if they

comply with the primitive type size assertion checks in the header:StdTypes.hpp

https://borasoftware.com/licenses/balau-license.html

Balau core C++ library 5

static_assert(CHAR_BIT == 8);
 static_assert(sizeof(short) == 2);

 static_assert(sizeof(int) == 4);
 static_assert(sizeof(long long) == 8);

Due to the size difference between long integers in different common data models, the long

and integer types are not used in the library other than when a dependencyunsigned long

requires a value of one of those types. Instead, use of the and long long unsigned long long

integer types allows the commonly accepted data models to be supported without primitive

type size conflicts.

CPU architectures

Balau has been developed and tested on x86-64.

Concurrent code in the library uses the C++ 11 atomic operations library. Consequently, the

library should be free of data races on all platforms that have a standards compliant C++17

compiler and standard library.

Building

Balau uses the CMake build system. See the for information on building Balaubuilding page

and its dependencies.

The source code includes a set of unit tests, implemented with the Balau test runner. After

building the library, the tests may be run by launching the application. The testsBalauTests

can also be used as an aid in getting up to speed quickly with each feature in the library.

Contributing

The core principal of the Balau core C++ library is to provide a user friendly C++ application

framework on top of Boost and ICU, on which complex Unicode based C++ software

applications may be created. To achieve this aim, the library contains a set of core

application components (injector, environment configuration framework, logger, test runner)

that form the basis of a complex C++ software application, and a set of utilities with

straightforward APIs.

The library is in active development. Many of the themes can be expanded to cover a

greater breadth of features and utilities.

Pull requests with additional components and utilities are welcome. Some guidelines are

included on the page. A current list of planned development is available on the contributing

 page.planned features

6 Balau core C++ library

* Configuration of the browser's security settings may be required. See the documentation on fordirect loading

more information.

https://borasoftware.com/doc/boradoc/latest/manual/direct-loading.html

Balau core C++ library 7

APPLICATION

8 Balau core C++ library

Injector
Overview

Introduction

A C++ dependency injection framework. The injector is configured via templated binding

functions and provides get-instance methods for non-polymorphic and polymorphic values,

references, thread-local and non-thread-local singletons. The code based application

configuration mechanism is performed via implementations of the ApplicationConfiguration

base class. Binding declaration calls within application configuration classes define non-

polymorphic value (termed), polymorphic value (termed), reference, andvalue unique

singleton bindings.

The dependency injection framework also integrates with the hierarchical property framework

. This allows typed and untyped () environment properties (simple and composite)std::string

to be created in the injector via implementations of the class.EnvironmentConfiguration

Using this approach, multiple application processes (one set of processes per application

environment) may be run from the same injector configuration. Each environment is

configured according to the environment's property file(s) and the environment configuration

is validated and loaded into the injector by the meta-configuration contained in the

implementations of the class.EnvironmentConfiguration

Dependency injection

Using a dependency injection approach for the structural wiring of a software application is

useful when the complexity of the application reaches a certain threshold. As an

application's source code becomes larger and more complex, manual management of

dependencies becomes overly complicated and error prone.

In this respect, using one or more injectors in the design of a software application reduces

complexity, concentrates structural wiring into a concise set of declarations, and delegates

object lifetime management of long lived objects to the injection framework. The dependency

injection paradigm also facilitates isolating a class for unit testing, by allowing mocked or

stubbed dependencies to be supplied to an instance of the class being tested.

Balau injector

The Balau injector provides a constructor injection paradigm, where the constructors of

injectable classes are the populating mechanism of injected instances. Configuration of the

injector dependency graph is performed within one or more configuration classes that are

specified during injector instantiation. Configuration of each injectable class is achieved via

Balau core C++ library 9

an injector macro that specifies the dependencies that the injector will provide during

instantiation of the class.

Templated binding calls are used to provide type information at configuration time. Binding

calls are available for the specification of values, prototypes, instances, references,

providers, thread-local singletons, singletons, and provided singletons.

In addition to providing configured dependencies, the injector can provide itself as a

dependency when the shared class is requested. This allows complex injectableInjector

classes to use the injector directly, in addition to their standard dependencies. Differently

configured injectors can also be injected into a service at runtime, by using injector

hierarchies.

There are four types of instance provided by the injector:

non-polymorphic instances, provided directly as type ;value ValueT

polymorphic value instances, provided inside or unique std::unique_ptr<BaseT> std::

 containers;unique_ptr<BaseT, DeleterT>

polymorphic non-const and const instances, provided directly as types reference

 and ;BaseT & const BaseT &

polymorphic non-const and const instances, provided inside shared std::

 and containers.shared_ptr<BaseT> std::shared_ptr<const BaseT>

Each meta-type has its own instantiation semantics:

value instances are stack based non-polymorphic instances created via copy

construction or copy elision;

unique instances are new heap based polymorphic instances;

reference instances are const or non-const references provided to the injector via the

application configuration;

shared instances are singletons or thread local singletons, either instantiated by the

injector or provided to the injector via the application configuration.

The Balau injector is designed to allow arbitrary injector hierarchies to be arranged at

runtime and obtained via an instance of the simple (non-template) class. ThisInjector

includes injection of the injector into complex injectable classes that require direct access to

it. Bindings may also be named, allowing identically typed but differently named bindings to

be created and looked up dynamically.

10 Balau core C++ library

1.

2.

In order to ensure that binding issues are caught before injectors are used, each constructed

injector runs a dependency validation phase during instantiation. During this validation

phase, the injector constructs a dependency graph of all registered interfaces, classes,

providers, and relationships. The required bindings of each dependency are verified.

Dependency cycle analysis is also performed. This validation ensures that binding issues

are exposed during injector instantiation, allowing simple unit tests to be constructed to test

the structural wiring of each the application injector configuration.

Quick start

#include <Balau/Application/Injector.hpp>

#include <Balau/Application/Injectable.hpp>

The steps involved in creating a software application based on the Balau injector are:

create one or more injector configuration classes;

annotate injector aware classes with injection macros that define the constructor

injection semantics.

When creating an injector, the injector factory function takes one or more injector

configuration classes. There are two types of injector configuration:

application configuration;

environment configuration.

Application configuration defines the fixed application binding definitions for values, instance

creation, references, thread-local singletons, and singletons. Environment configuration

defines requirements and type information for environment specific value bindings (simple

and composite), created from environment specific properties files.

Both types of configuration are defined by creating a class containing an implementation of

the method. The code contained within the method is different for theconfigure configure

two types of configuration.

Application configuration

Application configuration is defined by inheriting from the class andApplicationConfiguration

implementing the method with binding calls.configure

Each binding is specified by a two part fluent call chain, defined within the method.configure

The first call in a binding call chain provides the binding's instance type and optional UTF-8

Balau core C++ library 11

string name. The second call in the chain defines the binding meta-type and any additional

type, object, or provider information required.

// An example injector configuration class.
class Configuration : public ApplicationConfiguration {
 public: void configure() const override {
 bind<Base>().toSingleton<Derived>();
 bind<Base2>().toUnique<Derived2>();
 bind<Base2>("alternative").toUnique<Derived3>();
 }
};

There following binding calls are available.

// An example injector configuration class.

12 Balau core C++ library

Binding type Description

toValue() Bind a concrete class.

toValue(ValueT) Bind a prototype value.

toValueProvider(std::function) Bind a value provider function.

toValueProvider<ProviderT>() Bind an injectable value provider class.

toValueProvider<ProviderT>(std::

shared_ptr<ProviderT>)
Bind an injectable value provider instance.

toUnique<DerivedT>() Bind an interface to a concrete class.

toUniqueProvider(std::function) Bind an interface to a polymorphic provider function.

toUniqueProvider<ProviderT>()
Bind an interface to an injectable unique pointer

provider class.

toUniqueProvider<ProviderT>(std::

shared_ptr<ProviderT>)

Bind an interface to a provided unique pointer

provider instance.

toReference(BaseT &) Bind a reference type to the supplied reference object.

toThreadLocal<DerivedT>()
Bind an interface to a thread-local, lazy concrete

singleton class.

toThreadLocal() Bind a thread-local, lazy concrete singleton class.

toSingleton<DerivedT>() Bind an interface to a lazy concrete singleton class.

toSingleton() Bind a lazy concrete singleton class.

toSingleton(std::

shared_ptr<BaseT>)
Bind an interface to the supplied singleton object.

toSingleton(BaseT *)
Bind an interface to the supplied singleton object via

pointer container initialisation style syntax.

toSingletonProvider<ProviderT>()
Bind an interface to an injectable singleton provider

class.

toSingletonProvider<ProviderT>

(std::shared_ptr<ProviderT>)

Bind an interface to a provided singleton provider

instance.

toEagerSingleton<DerivedT>() Bind an interface to a concrete eager singleton class.

toEagerSingleton() Bind a concrete eager singleton class.

Each of the binding types belongs to one or two of six meta-types. The meta-types are:

value - non-polymorphic, stack based, instantiated instances;

unique - polymorphic, heap based, instantiated instances;

reference - polymorphic, provided reference objects;

const reference - polymorphic, provided const reference objects;

shared - polymorphic, heap based shared objects (thread-local and singleton).

Balau core C++ library 13

const shared - polymorphic, heap based shared const objects (thread-local and

singleton).

Bindings that provide references or shared instances can be non-const or const. The meta-

type is determined via the presence or absence of a const qualifier in the specified type in

the binding call.

The polymorphic, heap based, instantiated instance meta-type is termed instead of unique

 in order to avoid confusion with the universal methods that accessinstance getInstance

instances from all meta-types according to the full specified type. These calls are discussed

later in the section.Injector usage

Environment configuration

Environment configuration is defined by one or two methods:

inheriting from the class and implementing the EnvironmentConfiguration configure

method with environment property type and requirements declaration calls;

instantiating the class directly and by supplying one orEnvironmentConfiguration

more type specification source files.

For more information on defining environment configurations via environment properties

within an injector based application, refer to the chapter.Environment

Injection macros

In order that classes take part in dependency injection, an injector macro needs to be added

to each of their declarations. There are three types of injector macro available.

Macro Description

BalauInjectConstruct

BalauInjectConstructNamed

Specify the class' direct dependency fields and implicitly create

an injectable constructor.

BalauInject

BalauInjectNamed

Specify the class' direct or indirect dependency fields. Do not

implicitly create an injectable constructor.

BalauInjectTypes

BalauInjectNamedTypes

Specify the types of the class' dependencies to be injected. Do

not implicitly create an injectable constructor.

All macros take an initial parameter which is the class name. The named versions of the

macros take the names of the dependencies in addition to the field names or types.

The choice of which macro to use depends on whether the injectable class' dependencies

correspond to direct / indirect fields, or whether one or more of the dependencies will be

used in some temporary way instead of being assigned to a field. If the former is the case,

14 Balau core C++ library

then the / or / BalauInjectConstruct BalauInjectConstructNamed BalauInject

 macros can be used. If the latter is the case, then the / BalauInjectNamed BalauInjectTypes

 macro should be used, as it will not be possible to automaticallyBalauInjectNamedTypes

determine the types of the dependencies.

The choice of whether to use the / or the BalauInjectConstruct BalauInjectConstructNamed

 / macros when all dependencies are being assigned to fieldsBalauInject BalauInjectNamed

depends on whether all the dependencies are direct or not, and whether all assignments in

the constructor initialisation list are simple or not. If they are direct and simple, then one of

the / macros can be used. Otherwise, theBalauInjectConstruct BalauInjectConstructNamed

injectable constructor should be manually written and one of the / BalauInject

 macros used.BalauInjectNamed

The chosen injector macro should be placed within the injectable class' declaration.

Balau core C++ library 15

//
// ////// BalauInjectConstruct macro //////
//
// Specify the injected dependencies via the class fields
// and implicitly create an injectable constructor.
//
class Derived2 : public Base2 {
 private: std::shared_ptr<Base> dependency;

 BalauInjectConstruct(Derived2, dependency)

 public: void foo() override;
};

 class Derived2 : public Base2 {
 private: std::shared_ptr<Base> dependency;

 BalauInject(Derived2, dependency)

 public: Derived2(std::shared_ptr<Base> dependency_)
 : dependency(std::move(dependency_)) {}

 public: void foo() override;
};

 class Derived2 : public Base {
 private: std::shared_ptr<Base> dependency;

 BalauInjectTypes(Derived2, std::shared_ptr<Base>)

 public: Derived2(std::shared_ptr<Base> dependency_)
 : dependency(std::move(dependency_)) {}

 public: void foo() override;
};

The alternative macros take dependency names. When these macros are used, allNamed

dependency names must be specified. Empty names must be specified with empty string

literals .""

//
// ////// BalauInjectConstruct macro //////
//
// Specify the injected dependencies via the class fields
// and implicitly create an injectable constructor.
//

//
// ////////// BalauInject macro ///////////
//
// Specify the injected dependencies via the class fields.
//

// Explicitly created injectable constructor.

//
// //////// BalauInjectTypes macro ////////
//
// Specify the injected dependencies' types.
//

// Explicitly created injectable constructor.

16 Balau core C++ library

//
// Example with a dependency name.
//
class Derived2 : public Base {
 private: std::shared_ptr<Base> dependency;

 BalauInjectConstructNamed(Derived2, dependency, "myDependency")

 public: void foo() override;
};

Injector usage

The injector is created by calling the function.Injector::create(Conf(), ...)

auto injector = Injector::create(Configuration(), ExtraConfiguration());

An alternative create function is also available, which takes the configuration instances in a

.std::vector

std::vector<std::shared_ptr<InjectorConfiguration>> conf;
 conf.emplace_back(new Configuration());
 conf.emplace_back(new ExtraConfiguration());

 auto injector = Injector::create(conf);

The alternative create function can be useful for defining the configuration in a single place

and using it in the main application and in a configuration validation test. Validation of

injector configuration is discussed later in this chapter.

Instances can be obtained directly from the injector via the call for non-getValue<ValueT>

polymorphic new instances, for polymorphic new instances, getUnique<BaseT>

 for polymorphic referenced objects, and forgetReference<BaseT> getShared<BaseT>

polymorphic shared values.

auto value = injector->getValue<MyValueCls>();
 auto unique = injector->getUnique<MyBaseCls>();
 auto & ref = injector->getReference<MyReferencedCls>();
 auto shared = injector->getShared<MySharedBaseCls>();

Alternatively, the unified method may be used to determine which of the four getInstance<T>

, , , or getValue<ValueT> getUnique<BaseT> getReference<BaseT> getShared<BaseT>

methods should be called, via compile time examination of the type parameter.

//
// Example with a dependency name.
//

Balau core C++ library 17

// Calls getValue<MyValueCls>()
auto value = injector->getInstance<MyValueCls>();

 auto unique = injector->getInstance<std::unique_ptr<MyBaseCls>>();

 auto & ref = injector->getInstance<MyReferencedCls &>();

 auto & ref = injector->getInstance<const MyReferencedCls &>();

 auto shared = injector->getInstance<std::shared_ptr<MySharedBaseCls>>>();

 auto shared = injector->getInstance<std::shared_ptr<const MySharedBaseCls>>>();

In this documentation, when it is not important to differentiate between the above methods,

the expression is used.get-instance

Child injectors

Child injectors may be created by calling the method. These instancecreateChild(Conf(), ...)

methods take one or more configuration class template parameters and instantiates a child

injector with the current injector as the parent.

// Create child injector with the specified configuration.
auto c = injector->createChild(ChildConf());

The alternative create method is also available for child injector creation. This create method

takes the configuration instances in a .std::vector

std::vector<std::shared_ptr<InjectorConfiguration>> conf;
 conf.emplace_back(new ChildConfiguration());
 conf.emplace_back(new ExtraChildConfiguration());

 auto c = injector->createChild(conf);

Alternatively, child injectors may be created by first creating a prototype child injector as

above, then repeatedly calling the method each time a new childcreateChild(prototype)

injector is required.

// Calls getValue<MyValueCls>()

// Calls getUnique<MyBaseCls>()

// Calls getReference<MyReferencedCls>()

// Calls getReference<const MyReferencedCls>()

// Calls getShared<MySharedBaseCls>()

// Calls getShared<const MySharedBaseCls>()

// Create child injector with the specified configuration.

18 Balau core C++ library

// Create child injector with the specified configuration.
auto prototype = injector->createChild(ChildConf());

 auto c = injector->createChild(prototype);

Using prototype child injectors avoids the build and validation phases of injector construction

each time a new child injector is required. The total overhead of creating a child injector from

a prototype is limited to the copying of two shared pointers.

It is important to note that the instances of singleton and thread-local singleton bindings of

the prototype will be shared between all child injectors created from the prototype. If this is

not desired behaviour, then a new child injector must be created via the other createChild

factory functions that instantiate their own bindings.

Configuration

There are two places where injector configuration is located. The first is within the

application's injector configuration. This configuration is the internal wiring of the application.

The configuration takes the form of one or more injector configuration classes, instances of

which are passed to the injector at construction time. Configuration classes provide the

binding information that is used to create the dependency graph.

The second place where injector configuration is located is within participating classes.

These are typically each defined with a Balau injector macro in the class declaration. These

macros provide information (normally via the of direct or indirect class memberdecltype

variables) on the injected dependency types and optionally dependency names that the

injector will use during instantiation.

An injector aware class only identifies the injected objects to deliver to the class' injectable

constructor, and is independent to the main dependency wiring configuration of a developed

software application. Injectable classes may thus be developed independently of the main

application, with the application's configuration subsequently wiring them into the

dependency graph.

Non-injector aware types and primitive types used for prototype based instance provision do

not have any injector macro applied to them. Instances that are constructed manually and

passed to a binding call as prototypes, references, or singletons do not require an injector

macro, as they are not instantiated by the injector. Similarly, instances that are constructed

within a provider function or class that is passed to a binding call do not require an injector

macro, as they are not instantiated by the injector either.

// Create child injector with the specified configuration.

// Create child injector from the prototype.

Balau core C++ library 19

Injector configuration

The injector is configured via one or more configuration classes, instances of which are

passed to the injector's constructor. An example of an application configuration class is:

class Configuration : public ApplicationConfiguration {
 public: void configure() const override {
 bind<Base>().toSingleton<DerivedA>();
 bind<Base2>().toUnique<Derived2>();
 }
};

Each configuration class must implement the method. Binding statements areconfigure

placed inside application configuration implementation methods. Environmentconfigure

property name/type declarations are placed inside environment configuration implementation

 methods. This documentation chapter discusses application configuration in detail.configure

For more information about environment configuration, see the chapter.Environment

Each binding command in an application configuration class implicates a particular type of

binding. In the above example, polymorphic singleton and polymorphic new instance

bindings are configured.

Each binding command consists of a two part fluent call. The first call specifies thebind

interface class as the function template parameter and an optional binding name as a call

argument.

The second call specifies the binding type via the function name, along with implementation

or provider type as the template parameter for binding types that require one. Bindings that

require an object receive the object as a call argument.

The available binding calls are as follows.

Binding type Description

toValue()

Bind a concrete class. A new instance of the class will

be stack created each time an instance is requested,

and returned via copy elision. The object will be

supplied as .ValueT

toValue(ValueT)

Bind a prototype value. A new instance of the value

will be created each time an instance is requested via

copy semantics. The value will be supplied as .ValueT

20 Balau core C++ library

toValueProvider(std::

function<ValueT ()>)

Bind a concrete class to a provider function. A new

instance of the class will be stack constructed by the

provider each time an instance is requested. The

object will be supplied as .ValueT

toValueProvider<ProviderT>()

Bind a concrete class to an injectable provider class.

A new instance of the value class will be stack

constructed by the provider each time an instance is

requested. The object will be supplied as . The ValueT

provider will be constructed via standard injection of

the provider's dependencies.

toValueProvider<ProviderT>(std::

shared_ptr<ProviderT>)

Bind a concrete class to an injectable provider

instance. The provider instance is supplied in a

shared pointer container, allowing the caller to retain

shared ownership if required. A new instance of the

value class will be stack constructed by the provider

each time an instance is requested. The object will be

supplied as . The provider will be constructed ValueT

via standard injection of the provider's dependencies.

toUnique<DerivedT>()

Bind an interface to an implementing class. A new

instance of the class will be heap constructed each

time an instance is requested. The object will be

supplied as .std::unique_ptr<BaseT>

toUniqueProvider(

std::function<std::

unique_ptr<BaseT> ()>

)

Bind an interface to a provider function. A new

instance deriving from the base type will be heap

constructed by the provider each time an instance is

requested. The object will be supplied as std::

.unique_ptr<BaseT>

toUniqueProvider<ProviderT>()

Bind an interface to an injectable provider class. A

new instance deriving from the base type will be heap

constructed by the provider each time an instance is

requested. The object will be supplied as std::

. The provider will be constructed unique_ptr<BaseT>

via standard injection of the provider's dependencies.

Balau core C++ library 21

toUniqueProvider<ProviderT>(std::

shared_ptr<ProviderT>)

Bind an interface to an injectable provider class. The

provider instance is supplied in a shared pointer

container, allowing the caller to retain shared

ownership if required. A new instance deriving from

the base type will be heap constructed by the provider

each time an instance is requested. The object will be

supplied as . The provider will std::unique_ptr<BaseT>

be constructed via standard injection of the provider's

dependencies.

toReference(BaseT &)

Bind a reference type to the supplied reference

object. A reference to the object referenced in the

injector's configuration will be returned on each call.

The object will be supplied as .BaseT &

toThreadLocal<DerivedT>()

Bind an interface to an implementing class with

thread-local singleton semantics. The thread-local

singleton will be heap constructed lazily for each new

calling thread. The object will be supplied as std::

.shared_ptr<BaseT>

toThreadLocal()

Bind a concrete class with thread-local singleton

semantics. The thread-local singleton will be heap

constructed lazily for each new calling thread. The

object will be supplied as .std::shared_ptr<T>

toSingleton<DerivedT>()

Bind an interface to an implementing class with

singleton semantics. The singleton will be heap

constructed lazily. The object will be supplied as std::

.shared_ptr<BaseT>

toSingleton()

Bind a concrete class with singleton semantics. The

singleton will be heap constructed lazily. The object

will be supplied as .std::shared_ptr<T>

toSingleton(std::

shared_ptr<BaseT>)

Bind an interface to the supplied singleton object. The

injector will share ownership of the pointer. The object

will be supplied as .std::shared_ptr<BaseT>

toSingleton(BaseT *)

Bind an interface to the supplied singleton object. The

injector will take ownership of the pointer. The object

will be supplied as .std::shared_ptr<BaseT>

22 Balau core C++ library

toSingletonProvider()

Bind a singleton provider class for singleton

semantics. The singleton will be provided by

instantiating the provider and calling it a single time

during injector creation. The object will be supplied as

.std::shared_ptr<T>

toSingletonProvider(std::

shared<ProviderT>)

Bind a singleton provider instance for singleton

semantics. The singleton will be provided by calling

the provider a single time during injector creation. The

provider will then be dereferenced. The object will be

supplied as .std::shared_ptr<T>

toEagerSingleton<DerivedT>()

Bind an interface to an implementing class with

singleton semantics. The singleton will be heap

constructed eagerly. The object will be supplied as

.std::shared_ptr<BaseT>

toEagerSingleton()

Bind a concrete singleton class. The singleton will be

heap constructed eagerly. The object will be supplied

as .std::shared_ptr<T>

Each of the binding types belongs to one of four meta-types. These meta-types are:

Value;

Unique;

Reference;

Shared.

These classifications correspond to the four types of instance provided by the injector.

Two of the four meta-type classifications are also available in const form. There are thus

effectively six meta-types in total:

Value;

Unique;

Reference;

Const Reference;

Shared;

Const Shared.

Balau core C++ library 23

The meta-type classification and const qualifier of a binding forms part of the binding key

(the other parts being the typeid and the name). The six meta-type classifications thus form

six binding groups. In each binding group, the typeid and name must be unique. If an

attempt is made to create an injector with a configuration that has duplicate typeid/name

pairs in a classification group, a will be thrown during creation ofDuplicateBindingException

the injector.

When the injector completes the configuration phase, a validation phase is run. This

validation phase verifies that all the dependencies required by each injectable participating

class (i.e. a class that takes one or more dependencies) can be satisfied by the injector. If

this is not the case, the injector throws a exception.NoBinding

The validation phase ensures that any binding issues that may occur with registered classes

are caught at the time of injector instantiation. The only subsequent binding runtime errors

that may occur are thus direct attempts to obtain instances from the injector for bindings that

do not exist.

Reference bindings

Although reference bindings are conceptually simple, care must be taken with regard to

referenced object lifetimes.

As referenced objects are not instantiated inside the injector nor does the injector take

ownership of the object, the injector has no control on the lifetime of the supplied objects.

Consequently, it is important to take into account that the lifecycle management of

referenced objects is the responsibility of the application and not of the injector.

The policy for referenced object lifetimes must therefore be to ensure that all objects passed

to the injector's configuration for referencing remain alive past the end of the injector's

lifetime and the lifetimes of other objects that have obtained references to these objects from

the injector.

Due to the potential complexity of managing this, it is best to limit the use of reference

bindings to that of objects that are easily known to have sufficiently long lives.

Const bindings

The injector supports bindings for and binding types.const Reference Shared

If bindings are specified for for or binding types, the qualifier willconst Value Unique const

be stripped from the type and a warning logged to the . Stripping the balau.injector const

qualifier from or binding types will not affect the injector semantics, asValue Unique

bindings of these meta-types produce new instances. If a new instance needs to be const,

the instance can be set to const at the calling site.

24 Balau core C++ library

Injectable classes

Base interfaces / abstract base classes do not require an injector macro and are no different

from any other abstract C++ class.

Concrete implementation classes that are to be instantiated by the injector require an

injector configuration macro. This macro specifies the types (via for the decltype

 / and / BalauInjectConstruct BalauInjectConstructNamed BalauInject BalauInjectNamed

macros, and directly for the / macros) andBalauInjectTypes BalauInjectNamedTypes

optional names of the injected dependencies. The / BalauInjectConstruct

 macros also define an injectable constructor.BalauInjectConstructNamed

Injector macros are currently defined with up to sixteen unnamed or named dependencies.

Inject-construct macros

The following is an example of an injectable class that uses an inject-construct macro.

class Derived2 : public Base2 {

 private: std::shared_ptr<Base> dependency;

 BalauInjectConstruct(Derived2, dependency)

 public: void foo2() override;
};

The macro specifies that this implementation of takes a singleBalauInjectConstruct Base2

dependency. The specified member variable's type will be used to form the factory method

in the class and the corresponding constructor.

The resulting implicit constructor defined by the macro is as follows.BalauInjectConstruct

private: explicit Derived2(std::shared_ptr<Base> dependency_)
 : dependency(std::forward<std::shared_ptr<Base>>(dependency_)) {}

The automatically generated constructor will move value, unique pointer, and shared pointer

 type dependencies into the member variables, and will assign supplied reference rvalue

 type dependencies to their associated class members.lvalue

The general form of the automatically generated constructors via the / BalauInjectConstruct

 macros is as follows (d0, d1, d2, ... are the member variablesBalauInjectConstructNamed

/references of the class).

// The dependency that is populated via the constructor.

// The injector boilerplate.

Balau core C++ library 25

private: ClassName(decltype(d0) d0_,
 decltype(d1) d1_,
 decltype(d2) d2_,

) : d0(std::forward<decltype(d0)>(d0_))

 , d1(std::forward<decltype(d1)>(d1_))
 , d2(std::forward<decltype(d2)>(d2_))

{}

The two possible formats of the macro are:

BalauInjectConstruct(ClassName, MemberVariable ...)
 BalauInjectConstructNamed(ClassName, { MemberVariable, Name } ...)

where:

ClassName is the name of the class;

X is the number of dependencies that the implicitly defined class constructor will take;

MemberVariable is the direct or indirect member variable to be set in the constructor;

Name is the name of the dependency.

The first parameter in the macros is always the name of the class. As C++ does not have

any way of specifying the class' type within a class declaration, the class name must be

provided to the macro.

The entries specified in the macro are used in expressions inMemberVariable decltype

order to obtain the required types for the dependencies.

Inject only macros

In addition to the / macros, a similar pairBalauInjectConstruct BalauInjectConstructNamed

of / macros exist.BalauInject BalauInjectNamed

BalauInject(ClassName, MemberVariable ...)
 BalauInjectNamed(ClassName, { MemberVariable, Name } ...)

These macros are identical to the / BalauInjectConstruct BalauInjectConstructNamed

macros with the exception that they leave the definition of the injectable constructor to the

end developer. This allows the injectable constructor to be customised. The notable

requirement for this is when injected objects are consumed in a non-uniform way.

// ... up to 16 in total ...

// ... up to 16 in total ...

26 Balau core C++ library

The following is an example of a constructor-less macro used to specify named

dependencies.

class Derived2WithNamed : public Base2 {
 private: std::shared_ptr<Base> dependency;

 BalauInjectNamed(Derived2WithNamed, dependency, "namedBase")

 private: explicit Derived2WithNamed(std::shared_ptr<Base> aDependency)
 : dependency(std::move(aDependency)) {
 capture.add("Derived2WithNamed constructor");
 }

 public: ~Derived2WithNamed() override = default;

 public: void foo2() override {
 capture.add("Derived2WithNamed.foo2");
 dependency->foo();
 }
};

One notable use case for using the / macros instead of the BalauInject BalauInjectNamed

 / macros is when indirect memberBalauInjectConstruct BalauInjectConstructNamed

variables need to be specified.

Another example of the use of an explicit injectable constructor can be seen in the

 class of the Balau library. This example illustrates the use of indirect memberHttpServer

variables to define the injected types. Several of the injected objects are consumed by the

inner object instead of direct fields, necessitating an explicit definition of the injectedstate

constructor.

// The injector boilerplate for a named dependency.

// Explicitly defined injectable class, allowing customisation.

Balau core C++ library 27

// The injector macro.
BalauInjectNamed(
 HttpServer
 , state->injector, ""
 , state->serverId, "httpServerIdentification"
 , state->endpoint, "httpServerEndpoint"
 , threadNamePrefix, "httpServerThreadName"
 , workerCount, "httpServerWorkerCount"
 , state->httpHandler, "httpHandler"
 , state->wsHandler, "webSocketHandler"
 , state->mimeTypes, "mimeTypes"
);

 HttpServer(std::shared_ptr<Injector> injector,
 std::string serverIdentification,
 TCP::endpoint endpoint,
 std::string threadNamePrefix_,
 size_t workerCount_,
 std::shared_ptr<HttpWebApp> httpHandler,
 std::shared_ptr<WsWebApp> wsHandler,
 std::shared_ptr<MimeTypes> mimeTypes);

Inject types macros

The standard injector macros use the direct or indirect field names of the class in decltype

expressions in order to obtain the required types for the dependencies. This approach is

compact and efficient and should be used in the majority of cases. However, these macros

will not work if:

one or more of the dependencies should be specified as different but compatible types

to the ones derived via , (an example of which is promoting a decltype std::

 to a member variable in the constructorunique_ptr<BaseT> std::shared_ptr<BaseT>

initialisation);

one or more of the dependencies are used without assigning them to direct or indirect

member variables.

The alternative / macros perform a similar job toBalauInjectTypes BalauInjectNamedTypes

the standard macros, but take the types of the dependencies instead of the direct or indirect

member variable names.

BalauInjectTypes(ClassName, DependencyType ...)
 BalauInjectNamedTypes(ClassName, { DependencyType, Name } ...)

If the class were to be declared with a macro instead ofHttpServer BalauInjectNamedTypes

the macro, the source code would look like the following extract.BalauInjectNamed

// The injector macro.

// The explicitly defined injectable constructor.

28 Balau core C++ library

// The injector macro with explicit dependency type information.
BalauInjectNamedTypes(
 HttpServer
 , std::shared_ptr<Injector>, ""
 , std::string, "httpServerIdentification"
 , TCP::Endpoint, "httpServerEndpoint"
 , std::string, "httpServerThreadName"
 , size_t, "httpServerWorkerCount"
 , std::shared_ptr<HttpWebApp>, "httpHandler"
 , std::shared_ptr<WsWebApp>, "webSocketHandler"
 , std::shared_ptr<MimeTypes>, "mimeTypes"
);

 HttpServer(std::shared_ptr<Injector> injector,
 std::string serverIdentification,
 TCP::endpoint endpoint,
 std::string threadNamePrefix_,
 size_t workerCount_,
 std::shared_ptr<HttpWebApp> httpHandler,
 std::shared_ptr<WsWebApp> wsHandler,
 std::shared_ptr<MimeTypes> mimeTypes);

Given that the types of the direct or indirect member variables of an injectable class often

match the types of the dependencies, use of the macros should onlyBalauInjectTypesX

occur in a minority of cases.

Instantiation

Injector

Once one or more suitable configuration classes have been defined, an injector instance

may be created by calling the function:Injector::create(conf, ...)

std::shared_ptr<Injector> injector = Injector::create(Config1(), Config2());

This instantiates an injector instance in a and initialises thestd::shared_ptr<Injector>

bindings from the supplied configuration(s). The keyword can be used to condense theauto

statement:

auto injector = Injector::create(Config1(), Config2());

Injectors can only be instantiated within a . This allows them tostd::shared_ptr<Injector>

supply themselves as a dependency when required (via), and also beshared_from_this()

accessed as class member fields of type in classes that require direct access to theInjector

injector.

// The injector macro with explicit dependency type information.

// The explicitly defined injectable constructor.

Balau core C++ library 29

An injector may be shared throughout the application by copying the shared pointer.

Injectors may be used across multiple threads of the application without any synchronisation.

Instances

In order to obtain instances from an injector, four templated method calls are available:

ValueT stackInstance = injector.getValue<ValueT>();
 std::unique_ptr<BaseT> heapInstance = injector.getUnique<BaseT>();

 BaseT & reference = injector.getReference<BaseT>();
 std::shared_ptr<BaseT> singleton = injector.getShared<BaseT>();

The type can be non-const or const for reference and shared bindings.BaseT

Depending on the injector's configuration:

getValue calls may access instance objects created on the stack and moved, or copy

constructed from a prototype object;

getUnique calls may obtain polymorphic instance objects created on the heap;

getReference calls may access long lived objects referenced from within the

configuration used to construct the injector;

getShared calls may access singletons or thread-local singletons created on the heap.

In addition to the above calls, there is a unified templated method call that resolves the meta-

type by specialising on the supplied type parameter.

T object = injector.getInstance<T>();

Unlike the four previous template functions that all accept the direct value or base type of the

instance(s) represented by the binding, the template method resolves at compilegetInstance

time to:

getShared<T> if the specified type is ;std::shared_ptr<T>

getReference<T> if the specified type is ;T &

getUnique<T> if the specified type is ;std::unique_ptr<T>

getValue<T> otherwise.

The template method is useful when an injector is used within a template classgetInstance

or function, where the exact type to be requested is deduced by the compiler.

30 Balau core C++ library

Const bindings

Bindings may be created for reference and shared meta-types. For example, theconst

following application creates an injector configuration with a const reference binding and a

const singleton binding, along with an injected double value, then gets the objects from the

constructed injector.

#include <Balau/Application/Injector.hpp>

 struct A {
 double value;

 BalauInjectConstruct(A, value);

 A(A &) = delete;
};

 const A a(543.2);

 int main () {
 class Configuration : public ApplicationConfiguration {
 public: void configure() const override {

 bind<double>().toValue(123.456);

 bind<const A>().toReference(a);

 bind<const A>().toSingleton();
 }
 };

 auto injector = Injector::create<Configuration>();

 auto & r = injector->getReference<const A>();
 auto a = injector->getShared<const A>();
}

The injector calls return a const reference and a shared pointer containing a const pointer.

Note that the reference call requires an ampersand after the type keyword in order forauto

the code to compile.

Care should be take with regard to getting references from the injector. If the copy

constructor of class were not deleted, the code would compile if the ampersand wereA

removed.

// Class A2 has a copy constructor..
auto a3 = injector->getReference<const A2>();

// Prevent copying.

// A double value injected into A.

// Bind a const reference.

// Bind a const singleton.

// Class A2 has a copy constructor..

Balau core C++ library 31

The result of this would be a copy of the reference instead of a reference to it. Such

semantics are best created via the binding call instead.toValue(prototype)

Consequently, it is wise to delete the copy constructor of classes that are destined to be

referenced via the injector. This will enforce referencing at compile time.

Const promotion

When a get-instance call is made for a const object, the resulting binding used may be a non-

const binding that is to a const binding. This non-const to const binding semanticspromoted

of the injector parallels the non-const to const binding semantics of the C++ language.

Although value and unique meta-types do not support const bindings, const promotion

nevertheless applies to these non-polymorphic and polymorphic new instance binding types.

These const promotions are similar to that in C++ when a non-const object is copy assigned

to a new const declared object.

When the injector is part of a hierarchy, const promotion applies to the whole hierarchy. The

whole hierarchy will thus first be checked for a const binding, then the whole hierarchy will

be checked again for a non-const binding.

The promotion rules are listed in the following table. The left hand column lists the requested

const types. The middle column lists the default binding type supplied by the injector if a

binding of that type is available. If such a binding is not available, the injector will lookup a

binding of the type listed in the third column.

Requested meta-type Default provided meta-type
Promoted provided meta-

type

const ValueT - ValueT

std::unique_ptr<const

BaseT>
- std::unique_ptr<BaseT>

const std::unique_ptr<const

BaseT>
- std::unique_ptr<BaseT>

const BaseT & const BaseT & BaseT &

std::shared_ptr<const

BaseT>

std::shared_ptr<const

BaseT>
std::shared_ptr<BaseT>

const std::shared_ptr<const

BaseT>

std::shared_ptr<const

BaseT>
std::shared_ptr<BaseT>

32 Balau core C++ library

Weak promotion

When a get-instance call is made for a , the binding request will be std::weak_ptr<BaseT>

 to a shared binding. Weak pointer fields are thus initialised via shared bindingspromoted

during injection.

The promotion rules for weak pointers are as follows.

Requested meta-type Default provided meta-type
Fallback provided meta-

type

std::weak_ptr<BaseT> std::shared_ptr<BaseT> -

std::weak_ptr<const BaseT>
std::shared_ptr<const

BaseT>
std::shared_ptr<BaseT>

const std::weak_ptr<const

BaseT>

std::shared_ptr<const

BaseT>
std::shared_ptr<BaseT>

Custom deleters

The C++ and containers can be created with custom deletionstd::unique_ptr std::shared_ptr

policies. These allow deletion of pointers at the ends of their lifespans via deletion

mechanisms other than the standard call as provided by .delete std::default_delete

The mechanism by which custom deletion polices is specified in C++ is different for each

pointer container type. The Balau injector thus provides two different mechanism for deletion

policy specification in binding calls, one for and another for .std::unique_ptr std::shared_ptr

Accordingly, the mechanism for obtaining unique and shared instances that have custom

deleters is different for each binding type.

Unique custom deletion

The C++ container requires a custom deletion policy to be specified as astd::unique_ptr

type argument to the unique pointer class template. This is thus performed at compile time,

and becomes part of the pointer container's type.

Due to this, the deleter type of a binding is part of the binding key. For unique unique

bindings that do not have a custom deletion policy, the binding key deleter type is std::

.default_delete<BaseT>

In order to specify a custom deleter for a unique binding, a custom deleter type is specified

in the first part of the fluent call chain, i.e. as a type argument to the call.bind()

Balau core C++ library 33

//
// A custom deleter.
//
struct CustomDeleter {
 public: void operator () (U * object) {
 log.trace("Object deleted {}", (size_t) object);
 delete object;
 }
};

 class Configuration : public ApplicationConfiguration {
 public: void configure() const override {

 bind<U>().toUnique<V>();

 bind<U, CustomDeleter>().toUnique<V>();
 }
};

For other binding types, any deleter type specified in the call will be ignored.bind()

As the custom deleter type is part of the binding key for unique bindings, it must be specified

in order to obtain a polymorphic new instance of the specified type with the custom deletion

policy.

// Create an injector with the above configuration.
auto injector = Injector::create(Configuration());

 auto a = injector->getUnique<U>();

 auto b = injector->getUnique<U, CustomDeleter>();

Shared custom deletion

The C++ container requires a custom deletion policy to be specified as anstd::shared_ptr

argument to the shared pointer's constructor. Although custom deleter types for shared

bindings are specified at compile time in the Balau binding configuration fluent call chain, the

deleter instance itself is supplied at runtime to the C++ container. Thestd::shared_ptr

deleter type does not thus become part of the pointer container's type.

Due to this, the deleter type of a binding is not part of the binding key.shared

//
// A custom deleter.
//

//
// Custom deleter type specified for a binding.
//

// A unique binding for U, with std::default_delete<BaseT>.

// A unique binding for U, with custom deleter type CustomDeleter.

// Create an injector with the above configuration.

// Get a polymorphic new instance specified by binding {U, std::default_delete<U>}.

// Get a polymorphic new instance specified by binding {U, CustomDeleter}.

34 Balau core C++ library

In order to specify a custom deleter for a shared binding, a custom deleter type is specified

in the second part of the fluent call chain, i.e. as a type argument to the , toSingleton()

, and calls.toEagerSingleton() toThreadLocal()

// Custom deleter type specified for a binding.
class Configuration : public ApplicationConfiguration {
 public: void configure() const override {

 bind<U>().toShared<V>();

 bind<U>("custom").toShared<V, CustomDeleter>();
 }
};

As the custom deleter type is not part of the binding key for shared bindings, it must not be

specified in order to obtain a polymorphic shared instance of the specified type, regardless

of whether or not the shared instance has a custom deletion policy.

// Create an injector with the above configuration.
auto injector = Injector::create(Configuration());

 auto a = injector->getShared<U>();

 auto b = injector->getShared<U>("custom");

Injector hierarchies

The injector resolves instances from its binding configuration or from its parent injector.

Injectors can form a hierarchy, the binding configurations of which are queried in turn when

an instance is requested.

Child injector creation

In order to construct a child injector, the member function is used.createChild(Conf(), ...)

auto childInjector = parent->createChild(Config());

// Custom deleter type specified for a binding.

//
// A shared binding for U, with std::default_delete<BaseT>.
//

//
// A shared binding for U, with custom deleter type CustomDeleter.
//
// A name is required, otherwise the binding would be identical
// to the previous one.
//

// Create an injector with the above configuration.

// Get a polymorphic shared instance specified by binding {U, ""}.

// Get a polymorphic shared instance specified by binding {U, "custom"}.

Balau core C++ library 35

This method call is identical to the function used to create a parentless injector, with the

exception that it is a member function.

Prototype child injectors

Child injectors may also be created by first creating a prototype child injector as discussed

previously, then repeatedly calling the method each time a new childcreateChild(prototype)

injector is required.

// Create child injector with the specified configuration.
auto prototype = injector->createChild(ChildConf());

 auto c = injector->createChild(prototype);

Using prototype child injectors avoids the build and validation phases of injector construction

each time a new child injector is required. The total overhead of creating a child injector from

a prototype is thus limited to the copying of two shared pointers.

It is important to note that the instances of singleton and thread-local singleton bindings of

the prototype will be shared between all child injectors created from the prototype. If this is

not desired behaviour, then a new child injector must be created via the other createChild

functions that instantiate their own bindings.

Injector callbacks

An additional feature of the injector is the ability to register post-construction and pre-

destruction callbacks. Registered callbacks will then be called by the injector, either directly

after injector creation (for post-construction callbacks), or immediately before injector

destruction (for pre-destruction callbacks).

Standard callbacks

Registering callbacks provides a convenient way to execute program logic immediate after

injector creation and/or immediately before injector destruction. Post-construction and pre-

destruction callbacks are also useful for the explicit management of cyclic dependencies

between singletons (discussed in the next section).

The only restriction to the program logic that may be run within a callback is that pre-

destruction callbacks must be . This is because the pre-destruction callbacksnoexcept(true)

are run from within the injector destructor.

The signatures of the callback registration methods are as follows.

// Create child injector with the specified configuration.

// Create child injector from the prototype.

36 Balau core C++ library

// Post-construction callback registration.
void registerPostConstructionCall(const std::function<void (const Injector &)> & call) const;

 void registerPreDestructionCall(const std::function<void ()> & call) const;

The signatures of the callbacks are thus:

// Post-construction function signature.
const std::function<void (const Injector &)>

 const std::function<void ()>

Post-construct callbacks are supplied with a reference to the injector. Pre-destruction

callbacks are not. Although pre-destruction callbacks must be , the pre-noexcept(true)

destruction function signature does not contain , as this is not yet handled by noexcept(true)

 in C++17. Despite this, functions registered as pre-destruction callbacks muststd::function

nevertheless be .noexcept(true)

Singleton callback

The static singleton call convenience method

provides registration of shared pointer containers

that will be managed by the injector post-

construction and pre-destruction. This method

allows a singleton to be statically available in the

application, between the post-construction and

pre-destruction execution points.

The signature of the static singleton registration

method is as follows.

// Static singleton pointer registration.
template <typename T> void registerStaticSingleton(
 std::shared_ptr<T> * ptrPtr
 , std::string_view name = std::string_view()
) const;

The diagram on the right illustrates the region of

validity for static singleton pointers registered via

the injector method. TheregisterStaticSingleton

execution time-line travels from top to bottom.

Static singleton pointers are not guaranteed to be

// Post-construction callback registration.

// Pre-destruction callback registration.

// Post-construction function signature.

// Pre-destruction function signature.

// Static singleton pointer registration.

Balau core C++ library 37

valid during binding creation or binding destruction. Dereferencing them directly or indirectly

from within the constructors of other injectables may thus result in segmentation faults,

depending on the non-deterministic order of the construction of singletons.

In order to ensure that the static singleton registrations methods are called during inject

construction, singleton bindings containing static singleton registration calls must be eager,

or the singletons must be dependencies of eager singletons. Otherwise, the singletons may

not be constructed during binding construction and the registration callbacks will never be

executed.

Static singleton registration is a feature that is aimed solely for developers that are

rearchitecting a codebase with hard-wired singletons to one that uses dependency injection.

Use of static singleton registration is not recommended for greenfield projects. Migration

away from static singleton registration should also be planned for rearchitected codebases

that have been moved to a dependency injection architecture.

Cyclic dependencies

This section discusses how automatic cyclic dependencies are prevented by the injector and

how to manually manage cyclic dependencies between instances.

Configuration cycles

The Balau injector provides a constructor injection paradigm. One consequence of this is

that if a cyclic dependency is created between instances obtained from the injector, the

application will crash due to a call stack overflow for stack based types or a segmentation

fault for heap based types.

Due to this, the injector runs cyclic dependency analysis in the validation phase run during

injector instantiation. If a cycle is found in the binding dependency tree constructed from the

supplied configuration, a is thrown.CyclicDependencyException

Explicitly managed cycles

If a cyclic relationship between two instances is required, this must be managed explicitly by

the application. If an explicitly constructed cyclic relationship approach is used using shared

pointer containers, the normal rules in C++ regarding cycles apply and muststd::shared_ptr

be managed accordingly.

The best way to achieve an explicitly managed cyclic dependency is by creating a weak or

shared pointer in one of the cyclically dependent classes, then registering a post-

38 Balau core C++ library

construction callback with the injector from within the constructor of the class. This callback

can then set the pointer container to point to the other instance, by obtaining the instance

from the injector supplied in the callback.

The choice of weak or shared pointer will depend on the chosen destruction strategy. If no

action is taken to explicitly remove the cyclic relationship, then a weak pointer should be

used. This ensures that there is no permanent cyclic dependency in place. The

inconvenience with using a weak pointer is that the pointer must be obtained via the calllock

each time the pointer is required.

If a shared pointer is used, then a pre-destruction callback should be registered with the

injector from within the constructor of one of the instances that form the cyclic dependency

(typically the same class that contains the post-construction callback registration call). This

pre-destruction callback should reset the shared pointer, breaking the cyclic dependency

before the injector destructor destroys the binding map.

In order to perform explicit management of cyclic pointers, the injector needs to be injected

into one of the cyclically dependent classes.

Injecting the injector

In order to inject the injector, it is sufficient to specify the injector type as a weak pointer,

either via an injector macro that specifies the relevant injector field in the class (, BalauInject

, , or), or explicitly via anBalauInjectConstruct BalauInjectNamed BalauInjectConstructNamed

injector macro that specifies the exact type to be injected (, or BalauInjectTypes

). Once this is done, the injector will inject itself during a get-BalauInjectNamedTypes

instance call.

As singleton instances may be created during the creation of the injector, it is important to

note that such singletons must not use the injector from within their constructor. Instead, a

pointer to the injector should be maintained within a field of the class and set in the

constructor initialisation list. The injector can then be used in non-constructor methods in the

class.

If the injector is nevertheless required during construction, a post construct callback may be

registered with the injected injector. This callback will be executed by the injector immediate

after construction is complete.

Injection of the injector can only be achieved via a , either specifiedstd::weak_ptr<Injector>

as a field of the injectable class, or explicitly via the injector macros that specify the exact

types of the dependencies. This ensures that the writer of the injectable class be aware that

maintaining a shared pointer to the injector in the instance will result in a cyclic dependency

if the instance is a singleton (i.e. owned by the injector). If a shared pointer is used to

Balau core C++ library 39

reference the injected injector, the injector will become a node within an implicitly created

dependency cycle.

Injector cycles

As previously mentioned, injection of the injector can only be performed if the receiving type

is a . An example of what would happen if a shared pointer is usedstd::weak_ptr<Injector>

instead is illustrated in the following diagrams. The diagram below shows a set of

relationships between an injector, two singleton bindings, and some shared pointers

obtained from the injector by the application. Instances are shown in blue, shared pointers

internal to the instances are shown in purple, and shared pointers in the application code are

shown in brown.

In this example, singleton instance has a shared pointer field to singleton instance . ItB A

can be verified that there are no cycles by following sequences of aggregation/composition

paths and nodes. All paths lead to the terminal node .A

If a member variable is added to , then the relationships changestd::shared_ptr<Injector> A

to those in the diagram below. Two cycles have been formed within the pathways. The new

 member variable of is shown in red. Also shown in red are thestd::shared_ptr<Injector> A

path segments that form the cycles.

40 Balau core C++ library

If an attempt to instantiate an injector is made with such a configuration, the injector will

throw a during the validation phase.SharedInjectorException

The solution to this is to use a weak pointer when a binding needs the injector to beShared

injected into it. If a member variable is created in instead of thestd::weak_ptr<Injector> A

previous , no such exception is thrown by the injector. Thestd::shared_ptr<Injector>

relationships created by this modified configuration are illustrated below.

The forms a dependency break in the pathways and consequentlystd::weak_ptr<Injector>

there are no cycles present in the dependency graph.

Regardless of the above, it is important to note that the normal rules of C++ still apply after

the weak pointer is supplied. If an injector shared pointer is manually created in the

Balau core C++ library 41

injectable class' constructor from a supplied injector weak pointer and then subsequently

used to set a shared pointer field, a cyclic dependency will be created and the injector will

never be destroyed. Note that using a pre-destructor callback will not work either, as these

callbacks are run from within the injector's destructor, which will never get called. It is thus

essentially up the end developer to respect the requirement that pointers to the injector in

injectable classes be maintained as weak pointers.

Configuration testing

Once the configuration(s) of the application's injector(s) have been created, they can be unit

tested via one or more simple unit tests.

The injector provides two static methods and . The first method validate validateChild validate

validates root injector configurations and the second method validates childvalidateChild

configurations.

Root injectors

Unit testing an injector configuration that does not contain any eager singletons could be

achieved by simply instantiating the injector. However, if the configuration has any eager

singletons, they would be instantiated in the constructor. The method thus performsvalidate

injector instantiation without eager singleton instantiation.

The unit test can consist of a single statement. The test passes if no exception is thrown.

// Test the main runtime configuration of the application.
void InjectorConfigurationTest::mainRuntimeConfiguration() {

 Config1 config1();
 Config2 config2();

 Injector::validate(config1, config2);
}

The vector based validate function is also available if required.

// Test the main runtime configuration of the application.
void InjectorConfigurationTest::mainRuntimeConfiguration() {
 std::vector<std::shared_ptr<InjectorConfiguration>> conf;
 conf.emplace_back(new Config1());
 conf.emplace_back(new Config2());

 Injector::validate(conf);
}

// Test the main runtime configuration of the application.

// Configuration objects obtained at runtime.

// Test the main runtime configuration of the application.

42 Balau core C++ library

The vector based validate function is useful because the application's final configuration can

be defined in a single place, and then accessed by the main application and the validation

unit test. No duplication of the configuration instantiation list is then necessary, and the unit

test automatically picks up configuration instance changes without the test needing any

modification.

Child injectors

Validation of child injector configuration requires a suitable parent injector to be supplied to

the validation method. In order to avoid the eager singleton issues discussed previously, the

root injector method returns a object that represents the validatedvalidate ValidationParent

parent injector for use in child injector validation calls.

// Test the child configuration.
void InjectorConfigurationTest::childConfiguration() {
 auto parent = Injector::validate(Config1(), Config2());
 Injector::validateChild(parent, Config3());
}

The method also returns a object, allowing deep injectorvalidateChild ValidationParent

hierarchies to be validated.

// Test 4 levels of child configuration.
void InjectorConfigurationTest::childConfiguration() {
 auto parent1 = Injector::validate(Config1(), Config2());
 auto parent2 = Injector::validateChild(parent1, Config3());
 auto parent3 = Injector::validateChild(parent2, Config4());
 Injector::validateChild(parent3, Config5(), Config6());
}

The alternative vector based method is also available if required for childvalidateChild

injector testing.

Logging

At creation time, the injector logs the dependencies to the "balau.injector" logging

namespace, and the dependency tree to the "balau.container" logging namespace. This

logging can be useful for debugging dependency issues.

The logging output is set to TRACE level. In order to see one or both of these logging

outputs, set the "balau.injector" and/or "balau.container" logging namespaces to log at

TRACE level.

// Test the child configuration.

// Test 4 levels of child configuration.

Balau core C++ library 43

Design

This section provides a summary of some aspects of the philosophy and design of the Balau

injection framework. It is not necessary to read this section in order to use the injector.

Overview

The design of the Balau injection framework was partly influenced from experience with the

Java and C# based , , and dependency injection frameworks in enterpriseGuice Spring Unity

software development. The Balau injector has a technical approach that reflects the more

comprehensive type system available in the C++ language and standard library, and the

runtime reflection limitations in C++.

Background

Java based dependency injection frameworks work within the confines of the Java type

system. The combination of dual primitive/reference types and generics type erasure has

resulted in Java based injectors having an API based on a single meta-type: the Java

reference.

Outside of the compiler imposed keyword, Java references may be bound and rebound.final

Assigning a Java reference copies the reference "value", resulting in a new reference

"value" that points to the same object. In the context of C++, the Java reference is most

similar to a C++ pointer. Java dependency injection frameworks thus effectively work wholly

with pointers to objects.

In C++, we have a much richer type system than in Java. We also have a responsibility for

managing object lifetime that can only be partially automated via pointer containers.

Given the richer type system, a C++ dependency injection framework does not need to be

limited to providing pointers to objects. Potentially some or all or more than the followingT *

meta-types could be supplied.

44 Balau core C++ library

1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

Meta-type Description

T value

const T const value

T * pointer to object

const T * pointer to const object

T * const const pointer to object

const T * const const pointer to const object

T & reference to object (pointer)final

const T & reference to const object

unique_ptr<T> uniquely owned pointer

const unique_ptr<T> const uniquely owned pointer to object

unique_ptr<const T> uniquely owned pointer to const object

const unique_ptr<const T> const uniquely owned pointer to const object

shared_ptr<T> shared ownership pointer

const shared_ptr<T> const shared ownership pointer to object

shared_ptr<const T> shared ownership pointer to const object

const shared_ptr<const T> const shared ownership pointer to const object

Meta-design

The key questions raised during the development of the Balau injection framework were:

which meta-types should be provided by the injector;

how much of the work should be done at compile time;

how should the lack of Java-like annotations be mitigated;

behind what kind of API should this be encapsulated?

Some of the key requirements determined during the injector design phase were:

the injector must be a simple, standard (non-template) class , able to beInjector

trivially used in a class member variable declarations;

magic injection (injection of types or provision of instances not registered with the

injector) must not be supported;

the API must be simple to use;

the injection framework code must be simple to debug when an end developer is

faced with a failing binding or a non-obvious injection issue;

the injector must be able to inject itself;

Balau core C++ library 45

6.

7.

8.

injector creation must fail if there are dependency tree issues or cyclic dependencies;

application configuration must be represented in C++ code (i.e. no DSL or XML files);

environment configuration must be represented by text based property files, loaded

into the injector during instantiation.

It rapidly became clear that the technical implications of these questions and requirements

were tightly coupled. Allowing a lot of technical freedom in the technical solution to one of

the questions often resulted in unacceptable limitations for the technical solutions to one or

more of the other questions and requirements.

The final chosen design aims to reflect the common needs of enterprise software

development with a simple API, whilst maintaining safety, testability, and minimising feature

shrinkage. Good performance was a requirement, but not to the point of detriment to other

requirements. Enterprise dependency injection is not a replacement for fine grained object

lifetime management. The design thus reflects real world requirements for wiring enterprise

C++ applications.

Design

Meta-types

The table below lists the previous meta-types again, along with comments raised during the

design phase with regard to binding creation.

46 Balau core C++ library

Meta-type
Provide

binding?
Comments

T Yes
Copy elision / copy semantics of stack based new

instances.

unique_ptr<T> Yes
Unique ownership of heap based polymorphic new

instances.

T & Yes
Warn in the documentation that object lifetime is the

responsibility of the end developer.

const T & Yes
Warn in the documentation that object lifetime is the

responsibility of the end developer.

shared_ptr<T> Yes
Shared ownership of heap based polymorphic

singletons and thread-local singletons.

shared_ptr<const T> Yes
Const singletons could be useful and their inclusion

does not impact the design.

T * No
Raw pointers should be managed inside pointer

containers.

const T * No
Raw pointers should be managed inside pointer

containers.

T * const No
Raw pointers should be managed inside pointer

containers.

const T * const No
Raw pointers should be managed inside pointer

containers.

const T Promote
The semantics are identical to non-const new value

instance provision.

const unique_ptr<T> Promote
The semantics are identical to non-const new

polymorphic instance provision.

unique_ptr<const T> Promote
The semantics are identical to non-const new

polymorphic instance provision.

const

unique_ptr<const T>
Promote

The semantics are identical to non-const new

polymorphic instance provision.

const shared_ptr<T> Promote
The semantics are identical to non-const shared

pointer to T.

const

shared_ptr<const T>
Promote

The semantics are identical to non-const shared

pointer to const T.

The use of , , and meta-types for non-polymorphicT std::unique_ptr<T> std::shared_ptr<T>

values, polymorphic instances, and singletons respectively was natural from the outset.

Balau core C++ library 47

A decision that was taken during the design of the injector was to raise the severity of using

raw pointer bindings to a compile time error, via static assertions. Thus any bindings defined

with raw pointers result in a compile time error, along with an error message that proposes

using or bindings instead.Unique Shared

One consideration was whether reference bindings should be allowed, or whether the

lifetime management of this would open up the risk of dangling references. The conclusion

was that references should be provided, but the implications of providing references from the

injector should be clearly discussed in the documentation.

Another consideration was how to implement const versions of long lived objects (i.e. const

 and , including provision for promoting a non-constBaseT & std::shared_ptr<const BaseT>

binding to a const binding when no suitable const binding has been registered.

The final design thus provides the following types of non-const object.

Type of object Comments

non-polymorphic instances

T

Non-polymorphic instances are stack based values

produced from default construction, prototype

copying, and provider bindings. A new instance is

created on each call.

polymorphic instances

std::unique_ptr<T>

Polymorphic instances are heap based abstract

values. A new instance is created on each call.

polymorphic references

T &

Long lived provided objects, managed by the

application. The injector plays no part in lifetime

management, and assumes that the referenced object

specified in the configuration will live longer than the

injector and the consumers of references supplied by

the injector.

polymorphic thread-local singletons

std::shared_ptr<T>

Thread-local singletons are, amongst other things,

useful for tunnelling information through a call stack

without the need for explicit and repeated call

parameters or concurrent techniques.

polymorphic singletons

std::shared_ptr<T>

Singletons form the basic wiring of the software

application. Lazy singletons (the default) allow

optional singletons to be defined in configuration but

only instantiated if requested.

In addition to non-const bindings, the injector provides the following types of const object.

48 Balau core C++ library

Type of object Comments

polymorphic references

const T &
Const version of the reference binding.

polymorphic thread-local singletons

std::shared_ptr<const T>
Const version of the thread-local singleton binding.

polymorphic singletons

std::shared_ptr<const T>
Const version of the singleton binding.

Const promotions

Whilst certain const meta-type forms are not included in the previous list, the injector does

nevertheless implement const promotion. When a binding request for a const type is not

available, a suitable non-const type will be provided instead if available. This applies equally

to the non-polymorphic and polymorphic new instance binding types which do not support

const bindings in the configuration.

The following table details these non-const to const binding promotions.

Requested meta-type Default provided meta-type
Promoted provided meta-

type

const T - T

const std::unique_ptr<T> - std::unique_ptr<T>

std::unique_ptr<const T> - std::unique_ptr<T>

const std::unique_ptr<const

T>
- std::unique_ptr<T>

const T & const T & T &

const std::shared_ptr<T> - std::shared_ptr<T>

std::shared_ptr<const T> std::shared_ptr<const T> std::shared_ptr<T>

const std::shared_ptr<const

T>
std::shared_ptr<const T> std::shared_ptr<T>

Performance

Once an application is compiled with optimisation, each get-instance call in an injector

collapses down to a lookup in the binding map and a virtual method call on the looked up

binding object. The keys used in the binding map contain a type index encapsulating the

meta-type and const qualifier, plus a UTF-8 string for the name. The hash thus consists of

the type index hash combined with the hash of the string.

The injector's binding map is only mutated during the configuration phase of the injector

instantiation. Each injector's binding map is thus and consequently an unsynchronisedconst

Balau core C++ library 49

hash map is used internally. The injector is thread safe and no synchronisation is used in get-

instance calls.

Planned C++20 features

One feature that has not been implemented in the current version of the Balau injector is

compile time binding keys. The idea of building the binding keys at compile time via the get-

instance typename and string literal is not achievable in a simple way in C++17.

In a get-instance call, the type argument encapsulates all the information required for the

key apart from the name, i.e. binding meta-type, const qualifier, and typeid. In order to

provide compile time binding keys, the compile time name would also need to be specified

as a template argument.

// This is not possible in C++17.
auto obj = injector->getInstance<int, "blah">();

A fully compile time key would also allow hashes to be precalculated, reducing the binding

lookup to a modulus calculation and one or more equals calls on the hash map bin contents.

Whilst there are fudges and hacks to get the above kind of working in C++17, it was decided

that runtime binding keys would be sufficient until C++20 is released. C++20 should allow

string literal template arguments to be used, allowing the above code to be used without any

hacks.

The current runtime binding key get-instance methods will remain as they are. The addition

of compile time binding key get-instance methods will be implemented within an block,#ifdef

allowing continued use of the library with a C++17 compiler.

// This is not possible in C++17.

50 Balau core C++ library

Balau core C++ library 51

Environment configuration
Overview

Introduction

The class provides injectable environment configuration fromEnvironmentConfiguration

programming language agnostic hierarchical property files.

Typically, a server application will be run as one or more separate processes spread across

a group of machines. Each running process will be configured according to a specified

environment. In order to configure the application differently for each environment, the

 class provides a convenient way of binding externally sourcedEnvironmentConfiguration

hierarchical environment properties into the injector, ready for injection into dependent

classes as typed named values and named composite instances.EnvironmentProperties

The class works with hierarchical property files (see the EnvironmentConfiguration property

 chapter for more information on defining hierarchical property files). A URIparser

referencing a properties file is specified as a constructor argument of the

 class or an implementing class of the EnvironmentConfiguration EnvironmentConfiguration

class. The referenced properties file is parsed and appropriate bindings are created when

the environment configuration instance is called by the instantiating injector.

In addition to string value properties, the environment configuration framework supports

typed configuration properties via type specifications. The use of type specification files

allows a single set of hierarchical environment configuration type specification files to be

used across multiple applications written in multiple programming languages.

Type specifications may also have default values attached to them. This allows sensible

defaults that apply to all environments to be specified in a single location, preventing the

need for complex environment configuration property files and consequential logical coupling

across multiple environments and applications.

Type specification files and property value files are conceptually similar to classes and

instances. A type specification file provides a hierarchical typed contract. A property value

file provides hierarchical instance values that fulfill a type specification contract. This analogy

is not exact, as type specification files can provide default values for instantiation and

property value files can provide values that default to string types when no matching type

specification is provided. The hierarchical configuration design thus provides a looser

contract than the class-instance contract.

52 Balau core C++ library

The Balau library provides a C++ implementation of the environment configuration and

environment properties support classes. Java based environment configuration classes are

also planned, to support and based applications.Guice Spring

Usage patterns

There are three ways to use the environment configuration class:

derive from the class and hard wire hierarchical propertyEnvironmentConfiguration

type specifications inside the configure() method of the derived class;

instantiate an instance directly, by specifying one or moreEnvironmentConfiguration

hierarchical property type specification sources in addition to the input environment

properties sources.

derive from the class, hard wire hierarchical property typeEnvironmentConfiguration

specification declarations inside the configure() method of the derived class, and

specify one or more hierarchical property type specification sources in addition to the

input environment properties source.

The first approach places the hierarchical property type specifications directly within the C++

code. An advantage of this approach is that any type that has a corresponding fromString

function can be used for value property types parsed by the environment configuration,

without the need for explicit registration before injector creation.

The second approach places the hierarchical type specifications within type specification

definition files. The advantage of the second approach is that the environment configuration

type specifications are defined within an IDL (which is itself also in the hierarchical property

format). Environment configuration type specification files may thus be defined once and

used for multiple software applications written in multiple languages, without needing to

redefine the type specifications or the environment configuration files.

The disadvantage of the second approach is that all custom types (i.e. types not pre-

registered in the Balau library) referenced in the type specification files must be registered

with the consuming C++ applications before creating the injector. This can be achieved via

the following function calls.

EnvironmentConfiguration::registerValueType<T>

EnvironmentConfiguration::registerUniqueType<T>

Such registration of custom property types will not be necessary in other languages such as

Java, where reflection can be used to resolve string to type mappings.

Balau core C++ library 53

The third approach mixes the first two approaches together. This involves deriving from the

 class and also passing one or more type specification propertiesEnvironmentConfiguration

files to the base class constructor, in addition to implementing the method.configure

With the first and third approaches, additional validation logic can be placed in the configure

method if required. This places validation logic specific to specific environment configuration

inside the same class that generates the injector bindings for it.

With all three approaches, type specifications are optional. If a value property is present in a

specified property file and there is no corresponding type specification, a propertystd::string

will be created (being the default property value type).std::string

Quick start

#include <Balau/Application/EnvironmentConfiguration.hpp>

Properties

An example hierarchical property file used for environment configuration looks similar to the

following.

http.server.worker.count = 8

 file.serve {
 location = /
 document.root = file:src/doc
 cache.ttl = 3600
}

The above is an example from the Balau HTTP server tests.

Hard wired specifications

Hard wiring the environment configuration type specifications is best limited to applications

that either:

do not share their environment configuration with other applications; or

share their environment configuration with other C++ applications via a shared C++

library.

The creation of an environment configuration class with hard wired type specifications

consists of deriving from the base class, and implementing the EnvironmentConfiguration

 method. Environment configuration type specifications that correspond to theconfigure

properties in the referenced property file are placed within the method.configure

54 Balau core C++ library

The following is an example environment configuration class implementation for the above

example property file.

// Environment configuration for the example HTTP file server.
class EnvConfig : public EnvironmentConfiguration {
 public: EnvConfig(const Resource::Uri & input) : EnvironmentConfiguration(input) {}

 public: void configure() const override {
 value<int>("http.server.worker.count");

 group("file.serve"
 , value<std::string>("location")
 , unique<Resource::Uri>("document.root")
 , value<int>("cache.ttl")
);
 }
};

IDL based specifications

IDL based environment configuration type specifications are best used for applications that:

are written in multiple programming languages (and thus require language agnostic

type specifications);

are maintained by multiple teams each with a different release schedule.

The IDL based method for specifying environment configuration involves the external

creation of environment configuration type specification files, referenced via URI.

The creation of a type specification file consists of creating a hierarchical property file that is

similar to the environment configuration property file. Instead of specifying property data

values, the type annotations are specified.

Direct instantiation of the class involves passing one or moreEnvironmentConfiguration

environment configuration type specification files, referenced via URI to the constructor of

the class. The type specification files are cascaded together, andEnvironmentConfiguration

the resulting hierarchical type specifications are used as if they were specified within the

 method.configure

The following properties file is an example environment configuration type specification for

the previous properties data file.

// Environment configuration for the example HTTP file server.

Balau core C++ library 55

http.server.worker.count : int

 file.serve {
 location : string
 document.root : uri
 cache.ttl : int
}

In this example, the separator has been used in order to accentuate that the property:

values are type annotations. Alternative or whitespace separators can also be used if=

preferred.

Property type specification files look very similar to property data files, as they have a similar

hierarchical structure.

In order to use the type specification file, the class is instantiated,EnvironmentConfiguration

specifying the type specification file and the property data file to the constructor.

// Direct instantiation of the EnvironmentConfiguration class.

 auto envProps = Resource::File("path/to/env/env1.hconf");

 auto specs1 = Resource::File("path/to/type/specs1.thconf");
 auto specs2 = Resource::File("path/to/type/specs2.thconf");

 auto envConf = EnvironmentConfiguration(envProps, specs1, specs2);

The class' constructor is variadic, thus multiple type specificationEnvironmentConfiguration

URIs may be specified.

Mixed specifications

Hard wired and IDL based environment configuration type specifications can be mixed in an

environment configuration derived class.

If a mixed type specification is used in an environment configuration, it is possible that

duplicate type specifications are provided for a property (one in the hard wired configuration

and another in the type specification file). When this occurs, the hard wired type specification

/ default value takes precedence over the file based one. It is thus possible to override a file

base type specification by adding a hard wired type specification with an identical name and

hierarchy position in the derived class configuration method.

Default values

Both hard wired and IDL environment configuration type specifications may have default

values attached to them. This allows concise environment configuration data files to be

// Direct instantiation of the EnvironmentConfiguration class.

56 Balau core C++ library

created, by specifying only the differences between the defaults and the required values for

that environment.

The following example is a copy of the previous hard wired example environment

configuration class, with default values attached to the properties that can have sensible

defaults.

// Example environment configuration with sensible defaults.
class EnvConfig : public EnvironmentConfiguration {
 public: EnvConfig(const Resource::Uri & input) : EnvironmentConfiguration(input) {}

 public: void configure() const override {
 value<int>("http.server.worker.count", 8);

 group("file.serve"
 , value<std::string>("location")
 , unique<Resource::Uri>("document.root")
 , value<int>("cache.ttl", 3600)
);
 }
};

The following example is a copy of the previous IDL example environment configuration type

specifications file, with default values attached to the properties that can have sensible

defaults.

http.server.worker.count : int = 8

 file.serve {
 location : string
 document.root : uri
 cache.ttl : int = 3600
}

Application creation

Injector

In order to create an injector with both application and environment configuration, the

environment configuration instance(s) are passed to the injector's create function in the

same way as is done with the application configuration instance(s).

// Create an injector from a single application configuration
// and a single environment configuration.
auto injector = Injector::create(AppConfig(), EnvConfig(envProps));

// Example environment configuration with sensible defaults.

// Create an injector from a single application configuration
// and a single environment configuration.

Balau core C++ library 57

The above code will parse the contents of the properties file and will build a corresponding

set of bindings in the injector that correspond to the root properties (simple and composite)

within. Simple properties become named value or unique bindings of the type specified in

the environment configuration declaration, or if no type specification was made forstd::string

that property. Composite properties become named shared bindings of type

.EnvironmentProperties

Any issues encountered during the build will be flagged via an

.EnvironmentPropertiesException

All properties contained within a composite property become bindings within the resulting

 instance. This may include other composite properties thatEnvironmentProperties

themselves may contain their own bindings. instances have a similarEnvironmentProperties

public API to part of the injector's API. Three get-instance calls are available:

Get-instance call Instances obtained

getValue
Value property non-polymorphic

values

getUnique Value property polymorphic values

getComposite Composite properties

Unlike the bindings of the injector class (which may include bindings of type

), the bindings contained within instances areEnvironmentProperties EnvironmentProperties

not automatically injected into other dependencies. Due to this, the EnvironmentProperties

class does not have methods (which are used in the automatic injectiongetInstance

functions of injectable classes).

The string to object conversion mechanism used for value property non-polymorphic and

polymorphic values is Balau's universal function. More information on thefrom-string

universal function is available in the chapter. For non-from-string characters and strings

polymorphic value types, a from-string function should be defined with a reference to the

destination object. For polymorphic value types, a from-string function should be defined

with a reference to a destination object.std::shared_ptr<T>

Once the environment property bindings have been created, the root set of simple and

composite properties can be used in the same way as all other bindings in the injector,

including automatic injection into other dependencies.

58 Balau core C++ library

Application

In order to use an environment's properties file(s), the C++ application's main function must

provide a path to the environment's home directory / property file location(s). This can be

achieved by various methods, a couple of simple ones being:

passing the environment's home directory via a command line argument;

passing an environment identifier via a command line argument and resolving the

environment's home directory via a simple mapping.

The class is designed to fail immediately if an environmentEnvironmentConfiguration

configuration property file is not well formed, thereby preventing the application from starting

up with an invalid configuration.

Credentials

Part of the environment configuration supplied to an application will be one or more

credential properties. Unlike other environment configuration properties, credentials

properties should not be checked into VCS and will thus exist in one or more separate

properties files. This approach allows credentials information to be private to system

administrators.

Applications that require credentials information should thus have at least two environment

configuration properties files:

one for the main environment configuration (checked into VCS);

a second one containing credentials information and with a similar hierarchical

structure to the main configuration file.

During creation of the environment configuration injector bindings, the main environment

configuration and the credentials environment configuration will be merged together to form

a single set of hierarchical properties that will be transformed into bindings.

Property type IDL

Property type specifications are defined in the hierarchical property format. In the IDL, the

physical structure of the type specification hierarchy is similar to the hierarchy of

corresponding environment configuration data files.

The following type strings are currently pre-registered for the environment configuration

framework:

Balau core C++ library 59

byte;

short;

int;

long;

float;

double;

string;

char;

boolean;

uri.

All the pre-registered types apart from the type are non-polymorphic value types (valuesuri

obtained via subsequent calls). The type is a polymorphic value type (getValue uri unique

 values obtained via subsequent calls).std::unique_ptr getUnique

The environment configuration types map to the following C++ types.

type string C++ type

byte signed char

short short

int int

long long long

float float

double double

string std::string

char char

boolean bool

uri std::unique_ptr<Resource::Uri>

As environment configuration type specifications have been designed to be programming

language independent, unsigned integer types are not included as pre-registered types. If

unsigned integer type specifications are required for a Balau based C++ application, they

can be manually registered by calling the EnvironmentConfiguration::registerUnsignedTypes

function. Calling this function before creating the injector will register the following types:

type string C++ type

unsigned byte unsigned char

unsigned short unsigned short

unsigned int unsigned int

unsigned long unsigned long long

60 Balau core C++ library

Other non-standard types may also be manually registered by calling one of the following

functions for each custom type, before creating the injector.

EnvironmentConfiguration::registerValueType<T>

EnvironmentConfiguration::registerUniqueType<T>

The first function should be used to register non-polymorphic value types (for values

obtained via subsequent calls). The second function should be used to registergetValue

polymorphic value types (for values obtained via subsequent unique std::unique_ptr

 calls).getUnique

In addition to the type string used in type specification files, the polymorphic function takes a

cloner function. This function will be used to clone the prototype value onstd::unique_ptr

each subsequent call to .getUnique

The full signatures of the two functions are as follows.

///
/// Add a non-polymorphic type custom property binding builder
/// factory to the global property binding builder factory map.
///
template <typename ValueT>

 void registerValueType(const std::string & typeString);

 template <typename BaseT>
 using UniquePropertyCloner = std::function<

 std::unique_ptr<BaseT> (const std::unique_ptr<const BaseT> &)
>;

 template <typename BaseT>
 void registerUniqueType(const std::string & typeString,

 const UniquePropertyCloner<BaseT> & cloner);

An example of a hierarchical property type specification file follows.

http.server.worker.count : int

 file.serve {
 location : string
 document.root : uri
 cache.ttl : int
}

///
/// Add a non-polymorphic type custom property binding builder
/// factory to the global property binding builder factory map.
///

///
/// Add a polymorphic type custom property binding builder
/// factory to the global property binding builder factory map.
///

Balau core C++ library 61

1.

2.

3.

In the above example, the separator has been used in order to accentuate that the property:

values are type annotations. Alternative or whitespace separators can also be used if=

preferred, although the visual representation of default values will look less attractive if an =

token is used for both the property delimiter and the devault value.

Property type specification files look very similar to property files, as they have a similar

hierarchical structure.

As discussed previously, if a type specification is absent for a particular property, a binding

for the property will be created with type . Type specification files may thus onlystd::string

include type specifications for properties that have types other than the default .std::string

Regardless of type, it can be useful to include type specifications for certain std::string

properties, in order to specify default values for those properties. The following type

specification file is the same as the previous one, but with default values for worker count

and cache TTL.

http.server.worker.count : int = 8

 file.serve {
 location : string
 document.root : uri
 cache.ttl : int = 3600
}

Configuration cascading

An application that uses the environment configuration framework will consume the following

information:

file based type specifications and default values;

class based type specifications and default values;

file based property values.

The information from these three sources is merged together to form a hierarchical set of

, , and bindings in the injector.value unique shared

There are thus two merges that occur during the configuration of the injector:

merging of type specification / default value hierarchies;

merging of default values from the previous merge and property values.

The first type of cascade consists of the priority merging of type information and associated

default values, sourced from potentially multiple configuration producing applications. Type

62 Balau core C++ library

specification / default value overrides can thus be specified, either in additional type

specification files or hard coded in an derived configuration class.EnvironmentConfiguration

The second type of cascade consists of the merging of the environment's property values

with the default values resulting from the type specification priority merge. Unlike the

restrictions on the main property values, this value merge allows duplicate values to be

specified. The default values in the merged type specifications are overridden by the

environment's property values.

Example configuration

A full example is presented here (taken from the Balau tests). The example has a single type

specification file, a single derived environment configuration class with hard wired type

specifications, and a property value file.

The specification file contents is as follows.

http.server.worker.count : int = 6
value.multiplier : double = 123.456

 file.serve {
 location : string
 document.root : uri
 cache.ttl : int = 10000

 options {
 identity : string = Balau Server
 404 : uri = file:404.html
 }
}

The hard wired type specification class is as follows.

Balau core C++ library 63

struct EnvConfig : public EnvironmentConfiguration {
 EnvConfig(const File & env, const File & spec)
 : EnvironmentConfiguration(env, spec) {}

 void configure() const override {
 value<int>("http.server.worker.count", 16);
 value<double>("value.multiplier", 12.55e-3);

 group("file.serve"
 , value<std::string>("location", "/")
 , value<int>("cache.ttl", 3600)
 , group("options"
 , value<std::string>("identity", "My Server")
);
);

 value<double>("value.fraction", 0.432);
 }
};

The environment's property value file is as follows.

file.serve {
 location = /doc
 document.root = file:doc
}

The intermediate trees generated from the three sources are illustrated in the following

diagrams.

64 Balau core C++ library

Once merged, the resulting hierarchical bindings defined in the injector are illustrated in the

following diagram.

Design

This section provides a summary of some aspects of the philosophy and design of the

hierarchical environment configuration framework. It is not necessary to read this section in

order to use the framework.

Overview

The aim of the Balau environment configuration framework is to provide a way to specify

environment specific, injectable configuration that:

is type safe, via inter-environment type specifications;

provides the possibility of specifying sensible, inter-environment defaults for properties;

Balau core C++ library 65

1.

2.

3.

4.

5.

6.

allows hierarchical property data to be specified;

provides a hierarchical format that facilitates the specification of independent,

composite hierarchical property subsets;

has a familiar syntax;

is programming language independent.

Background

Environment configuration in enterprise applications has been achieved in a variety of ways.

One common technique is to supply environment configuration as a flat file containing key-

value pairs. These key-value pairs are then loaded into the application injector to form

injectable named string values. One common format for this approach is the .properties

format often used in Java applications.

Other bespoke approaches to environment configuration include hierarchical configuration

formats. Examples of these include XML based configuration (such as the format used in the

 of the Apache HTTP server), and curly bracket based hierarchicalconfiguration files

configuration blocks (the of the Nginx server being an example).configuration files

More recently, an elaboration on the traditional key-value approach has been to use YAML

as a more visually informative format for key-value properties. This approach also allows

string representations of complex values to be represented within the same physical

structure as the key-value property structure (i.e. value lists defined in the standard YAML

format).

Requirements

The key requirements determined during the design phase of the environment configuration

framework were:

provide a mechanism for composite properties, which represent standalone

environment configuration property subsets, injectable as a single

 class instance;EnvironmentProperties

allow types to be optionally specified for key-value properties;

provide a mechanism for specifying sensible property defaults;

separate configuration data into inter-environment data (property types, default

property values) and intra-environment data (environment specific property values);

provide an mechanism, which allows a hierarchical property file to be splitinclude

across multiple physical files;

https://httpd.apache.org/docs/2.4/configuring.html
https://www.nginx.com/resources/wiki/start/topics/examples/full/
http://yaml.org/

66 Balau core C++ library

6.

7.

8.

9.

10.

do not mix hierarchical structure with string representations of typed values (i.e. string

representations of a complex data structure assigned to a value property);

do not implement required/optional specifications for properties;

base the hierarchical property format on a well known non-hierarchical property

format, with minimal differences to the original format;

do not infer the hierarchical structure from indentation, use the well known "{" and "}"

block delimiter token pair instead;

use the standard string type of the implementing programming language (e.g. std::

 for C++) for value properties that do not have a corresponding type specification.string

File format

The resulting format chosen for both hierarchical environment configuration data files and

type specification files is described in detail in the chapter. The format isproperty parser

based upon a hierarchical extension to the file format. Composite properties are.properties

defined via "{" and "}" delimited blocks. The mechanism uses the "@" token toinclude

specify a URI to be included.

Other than the addition of the special "{", "}" and "@" characters and the corresponding non-

special, escaped "\{", "\}" and "\@" character pairs, the hierarchical property format is

identical to the original non-hierarchical property format.

Specification files

Environment configuration type specification files represent inter-environment configuration

data. This data is defined by an owning application and is shared across multiple

environments and consuming applications. The two pieces of information provided for each

value property are:

the property's value type;

the property's optional default value.

Value files

Environment configuration value files represent intra-environment configuration data. This

data is unique to an environment, but can be shared across multiple applications for that

environment. Environment configuration data files contain string representations of each

value property contained in the configuration hierarchy.

Balau core C++ library 67

1.

2.

3.

If a type specification for a value property is specified in the cascade of the supplied type

specification files, the value property will be typed. Otherwise, the property will be bound as

a string.

Configuration cascading

An important part of the environment configuration design was getting the semantics of

merging multiple type specification / default value and property value sources together. This

involves the merging of information of the following types:

file based type specifications and default values;

class based type specifications and default values;

file based property values.

There are three consequential information merges that could possibly occur:

merging type specification / default values;

merging property values;

merging default values and property values;

Finalising the exact semantics of each type of information cascade was a major part of the

design process of the environment configuration framework.

The first type of cascade consists of the priority merging of type information and associated

default values, sourced from potentially multiple configuration producing applications. During

the design analysis phase, it was concluded that duplicate type specification / default values

should be allowed. This allows type specification / default value overrides to be specified,

either in additional type specification files or hard coded in an EnvironmentConfiguration

derived configuration class.

The second type of cascade would consist of the priority merging of the property values of

the environment from multiple property value sources. This type of merging is not supported

in the environment configuration framework. Taking into account that each property value

becomes an injector binding, the presence of duplicate property values is effectively the

same as the presence of duplicate or application configuration bindings. As thevalue unique

injector does not allow such duplicate bindings, this restriction is carried through to property

values. This is the case both within a single property value file processed by an

 instance (property value duplication), and across multipleEnvironmentConfiguration

application and environment configuration instances (binding duplication) potentially

specified to the injector.

68 Balau core C++ library

The third type of cascade consists of the merging of the environment's property values with

the default values resulting from the type specification priority merge. Unlike the restrictions

on the main property values, this value merge does allow duplicate values to be specified.

The default values in the merged type specifications are overridden by the environment's

property values.

Consequently, there are only two types of information merge that occur in the environment

configuration framework:

merging type specification / default values;

merging default values and property values;

No required properties

One aspect of the design that matured during the development of the environment

configuration property framework was whether type specification files should have provision

for required/optional property annotations.

Overview

When considering this proposal, the first impressions of all involved developers were that the

capability of specifying which environment properties are required would improve the

correctness and safety of consuming applications. This however changed after a more deep

consideration of the implications of such a feature, including when taking into account the

releases cycles of multiple applications in an enterprise. It was subsequently concluded that

required/optional annotations would have a net negative effect on the development and

release process.

When a single version of a consuming application is made in isolation, required/optional

property annotations are clearly an advantage. Such annotations would provide both a visual

indication for developers and a validation mechanism at application startup.

However, when a more global consideration is made which takes into account multiple

environments, multiple applications, and multiple application versions, the required/optional

annotation feature forms a likeness to the abandoned required/optional designs of wire data

formats such as and .Protocol Buffers Apache Thrift

Analysis

The stated advantages of required/optional annotations in the environment configuration

framework were:

a validation mechanism run during application startup;

https://en.wikipedia.org/wiki/Protocol_Buffers
https://en.wikipedia.org/wiki/Apache_Thrift

Balau core C++ library 69

a clear visual indication for developers that are creating or modifying environment

configurations.

The primary disadvantage of required/optional annotations in the environment configuration

framework is that once a property is marked as required in a producing application's type

specification declarations, the release cycles of the suite of consuming applications in an

enterprise would be constrained to be synchronised. Such a release cycle synchronisation is

extremely inefficient in an enterprise of any complexity, and in the worst case would result in

breakages in the contracts between applications.

This disadvantage is exactly the same disadvantage which led to the abandonment of

required/optional annotations in wire data formats such as and Protocol Buffers Apache Thrift

.

Alternatives

When examining in more detail the overall design, the stated advantages of required

/optional annotations can be achieved via other means.

Validation

Modern enterprise quality software development is performed in the context of test driven

development. When using a dependency injection framework, development should include

testing of the application configuration. Such configuration testing is described in the injector

chapter for the Balau injector.

When the injector configuration is tested, the validation mechanism provided via required

/optional annotations is rendered unnecessary.

If, in exceptional circumstances, additional runtime validation is required, this additional

validation can be placed within the method(s) of the configure EnvironmentConfiguration

derived classes of the application.

Visual indications

Whilst visual indications of required properties for developers would be useful, the lack of

required/optional annotations in type specification files can be mostly mitigated by prioritising

the use of sensible property value defaults. The design of the hierarchical environment

configuration framework includes provision for inter-environment property defaults, specified

within the type specification files of producing applications.

If use of the default values feature is made a primary part of the development process, new

properties that are introduced into the release of a component will not require the developers

https://en.wikipedia.org/wiki/Protocol_Buffers
https://en.wikipedia.org/wiki/Apache_Thrift

70 Balau core C++ library

of consuming applications to "mend" their applications when upgrading to new versions of

the consumed type specification files. Instead, the default values of new properties will be

picked up automatically. Subsequent overriding of the new properties' default values can

then be made if necessary at a later date.

Balau core C++ library 71

Logger
Overview

A logging framework, with configurable loggers via logging namespaces. Loggers output to

C++ streams specified via the logging namespace configuration. Logging namespaces

inherit their parent configuration via a cascading inheritance.

Logging namespaces are configured via standard syntax. Thisenvironment configuration

can be supplied statically (via a logging configuration file), or dynamically by calling the

logging system method.configure

Quick start

#include <Balau/Logging/Logger.hpp>

Environment configuration: logging

Logging messages

Logging to Balau loggers is similar to that of other logging systems.

// A debug message.
log.debug("An object: {}", obj);

log.info("Hello, world!");

 log.error("Something went wrong. Data: {} / {}", data1, data2);

The first argument is a or string that specifies the message. The const char * std::string_view

 placeholders in the message are replaced by the string conversions of the remaining{}

arguments.

If source code file and line number information is required, the logging macros should be

used instead. The definitions of these macros contain the standard and __FILE__ __LINE__

macros that provide file and line number information.

// A debug message.

// An info message.

// An error message.

72 Balau core C++ library

// A debug message with file and line number information.
BalauLogDebug(log, "An object: {}", obj);

 BalauLogInfo(log, "Hello, world!");

 BalauLogError(log, "Something went wrong. Data: {} / {}", data1, data2);

If you do not wish to see the prefix on each of your logging statements, new definesBalau

can be created which alias these macros.

There are six logging levels: , , , , , and .trace debug info warn error none

Whether a log message is output to the logging stream depends on whether the logging

namespace is enabled for that logging level. This depends on the logging configuration.

The placeholders are replaced with the result of the call of the object(s) supplied{} toString

in the logging call. It is thus necessary that suitable functions are defined for alltoString

object types passed to logging calls.

In order for the compiler to pick up the correct functions during the functiontoString

template instantiation, the header file(s) containing the function(s) must be included

before the header is included.Logger.hpp

In addition to the standard logging methods that accept a variable number of parameters,

there is a function based logging method for each logging level. These methods accept a

function that is used to generate the message to log.

// An info message via a lambda.
log.info([&v1, &v2] () { return toString("Value = ", v1 * v2); });

The function based logging methods are useful when derived arguments need to be logged.

If a function based logging method were not used, the code used to derive the arguments

would execute, regardless of whether the message is needed or not, as prescribed by the

logging level of the logger.

In order to use loggers, there are two tasks required:

configure the logging system namespaces (optional);

obtaining references to loggers.

These tasks are discussed in reverse order below.

// A debug message with file and line number information.

// An info message with file and line number information.

// An error message with file and line number information.

// An info message via a lambda.

Balau core C++ library 73

Logger references

Loggers are identified via logging namespaces. A logging namespace is a string of dot

delimited identifiers. Typically, the application name or the reverse domain name of the

company is used as the logging namespace prefix, i.e. or ."balau" "com.borasoftware"

Namespaces are case sensitive.

Loggers are owned by the logging system and can be obtained by reference, by calling the

 function.Logger::getLogger

// Get a logger for the "balau.network" logging namespace.
Logger & log = Logger::getLogger("balau.network");

Logger references are typically set up as static fields of classes, but instance references and

local variables are also possible if the use case requires it.

////////// In header file. //////////

 class A {

 private: static Balau::Logger & log;
};

 Balau::Logger & A::log = Balau::Logger::getLogger("balau.network");

Logging configuration

The configuration of loggers is determined by the configuration of the logging namespaces.

Logging namespaces inherit their parent configuration via a cascading priority inheritance.

By default, the logging system configures itself automatically to log info and warn level

messages to stdout, and error level messages to stderr.

The default logging message format is:

%Y-%m-%d %H:%M:%S [%thread] %LEVEL - %namespace - %message

Details of the message format placeholders are provided in the detailed documentation.

There are two ways of providing a custom logging configuration:

create a configuration file in the same folder as the application'sbalau-logging.hconf

executable;

// Get a logger for the "balau.network" logging namespace.

////////// In header file. //////////

// Static member logger reference declaration.

/////////// In body file. ///////////

// Static member logger reference definition.

74 Balau core C++ library

call Balau::Logger::configure(std::string) within the application.

If a logging configuration file is provided, the contained configuration will be used from the

start of the application's execution. If logging configuration is provided via a Balau::Logger::

 call, the logging system will use the default configuration until the call is made.configure

The logging configuration is standard . Composite property namesenvironment configuration

specify the logging namespaces. The value properties defined within a composite property

provide the logging configuration for that namespace.

Usage

Configuration

There are two ways to supply the logging configuration.

The implicit way to configure the logging system is to provide a balau-logging.hconf

configuration file in the application binary directory. This will be automatically picked up by

the logging system.

The explicit way to configure the logging system is to provide logging configuration via a call

to:

Balau::Logger::configure(const std::string & conf);

The string argument passed in the call contains the logging configuration. This logging

configuration can be read from a file in a custom location, or may be generated by the

application as deemed appropriate by the caller.

The logging system can be reconfigured via subsequent calls to the above function. Calling

the following function will lock the configuration for the lifetime of the application execution:

Balau::Logger::lockConfiguration(bool throwOnReconfigure = false);

Subsequent calls to the configure function will then either be ignored (default behaviour) or

will throw a LoggingConfigurationException if throwOnReconfigure is set to true.

Logging reconfiguration provides eventual consistency. Logging during reconfiguring will

result in stable but non-deterministically configured logging. The logging format of a

particular logger during reconfiguration will either be the previous configuration or the new

configuration, but not a mixture of the two. Similarly, the stream(s) written to by a logger

during reconfiguration may be the previously specified ones or the newly specified ones.

Balau core C++ library 75

Logging configuration calls can be made in static contexts, including within static initialisation

blocks that are each executed in a non-deterministic order.

If no file is found and no call to configure is made, the logging systembalau-logging.hconf

will log INFO and WARN level messages to stdout and ERROR messages to stderr.

If the parsed logging configuration from is invalid, an error message willbalau-logging.hconf

be written to stderr and loggers associated with the affected namespaces will be configured

to write to stdout for all invalidly configured logging levels. If the format specification for a

namespace contains an invalid format specifier, an error message will be written to stderr

and the the invalid specifier will be output verbatim in subsequent log messages to affected

loggers.

Logger instances

Loggers are obtained via the static getLogger call in the logger class:

Balau::Logger & logger = Balau::Logger::getLogger(const std::string & loggingNamespace);

The parameter 'loggingNamespace' is the logging namespace that determines the

configuration of the logger (logging level, streams, message format).

The class also contains a static function . This logger references theLogger globalLogger()

logger associated with the global namespace. This logger may be useful when logging to the

global namespace is all that is required.

Calls to getLogger() can be in static or instance contexts. Normally such calls are placed in

static contexts.

//////////// Header file ////////////

 class A {

 private: static Balau::Logger & logger;

};

 Balau::Logger & A::logger = Balau::Logger::getLogger("A");

Loggers should always be maintained as references. Loggers are not owned by the caller,

and must not be deleted or placed within pointer containers.

//////////// Header file ////////////

// The class' logger.

// main class declaration..

///////////// Body file /////////////

// Get the logger associated with the logging namespace "A".

76 Balau core C++ library

The Balau logging system will not throw any exceptions from the call, other than ifgetLogger

there is a fatal error such as an out of memory issue.

Startup and shutdown

The logging system is first configured when the first call to or Logger::getInstance Logger::

 is made. Subsequent calls to will reconfigure the logging system.configure Logger::configure

The logging system state is maintained in a lazy singleton that is instantiated on the first call

to or . It is thus safe to use loggers inside staticLogger::getInstance Logger::configure

initialisation blocks. However, if such logging is made via another statically initialised logger

reference, that statically initialised logger reference may not be initialised yet, and the

application will crash. Due to this, the safe way of logging from within static initialisation

blocks is done by obtaining the logger from inside the initialisation block by calling Logger::

. This will always obtain a valid logger reference.getInstance

Logging system shutdown happens from the destructor of the statically allocated singleton.

The C++ standard states that the order of destruction of statically allocated objects is non-

deterministic. Logging from inside the destructors of statically allocated objects is thus not

safe and should not be performed, as the logging system may have already been shut down

by the time the destructor runs.

Logging messages

To log a message, the logger has five sets of templated methods that accept a variable

number of parameters. Each set corresponds to a logging level { trace, debug, info, warn,

error }.

The templated methods accept any types as const references. Each parameter is converted

to a string via the Balau universal to-string function (see the documentation on the universal

 for more information). It is sufficient to ensure that a function hasto-string function toString

been defined for the type of each parameter at the point of template function instantiation,

and the logger will use it to stringify the parameter.

In order for the compiler to pick up the correct functions during the functiontoString

template instantiation, the header file(s) containing the function(s) must be included

before the header is included.Logger.hpp

It is often more convenient to add an incomplete declaration in the header fileclass Logger;

where a logger reference is defined, and include the header in the body fileLogger.hpp

instead. This ensures that verification of header include order is confined to the single body

file instead of propagating to all files that include the header containing the logger reference.

Balau core C++ library 77

The log message passed to the call should contain the same number of parameter

placeholders as is passed to the function. A parameter placeholder has the form of a pair of

curly braces "{}". Each placeholder is then replaced during the log call by the associated

parameter.

Writing a log message thus has the following form:

ComplexObject results = process();

 LOG.info("The results of run {}/{} are: {}", runIndex, runCount, results);

In order to output source code file names, file paths, and/or line numbers of log message

locations, it is necessary to call the logging functions that take file path and line information

via a instance:SourceCodeLocation

LOG.info(SourceCodeLocation(__FILE__, __LINE__), "blah");

 LOG.info(SourceCodeLocation(__FILE__, __LINE__), "blah {} {}", one, two);

 LOG.info(SourceCodeLocation(__FILE__, __LINE__), [&o1, &o2] () {
 return toString("value = ", one * two);
});

The and macros are the standard C++ preprocessor macros that__FILE__ __LINE__

provide file path and line information. They must be physically placed in the source code line.

A better alternative to explicitly specifying the file path and line macros, containsLogger.hpp

a set of convenience macros that define the source code file paths and line macros implicitly:

#define BalauLogTrace(LOGGER, ...)
#define BalauLogDebug(LOGGER, ...)
#define BalauLogInfo(LOGGER, ...)
#define BalauLogWarn(LOGGER, ...)
#define BalauLogError(LOGGER, ...)

These are used as function calls that take the logger as the first argument and the message

/parameters as subsequent arguments:

BalauLogInfo(LOG, "blah");

 BalauLogInfo(LOG, "blah {} {}", one, two);

 BalauLogInfo(LOG, [&o1, &o2] () { return toString("value = ", one * two); });

Use of these macros is recommended in preference to the explicit calls.

78 Balau core C++ library

If you do not wish to see the prefix on each logging line of your code, create a set ofBalau

your own macros which delegate to the above macros:

#define MyAppLogTrace(LOGGER, ...) BalauLogTrace(LOGGER, __VA_ARGS__)
#define MyAppLogDebug(LOGGER, ...) BalauLogDebug(LOGGER, __VA_ARGS__)
#define MyAppLogInfo(LOGGER, ...) BalauLogInfo(LOGGER, __VA_ARGS__)
#define MyAppLogWarn(LOGGER, ...) BalauLogWarn(LOGGER, __VA_ARGS__)
#define MyAppLogError(LOGGER, ...) BalauLogError(LOGGER, __VA_ARGS__)

Logging namespaces

The logging framework uses hierarchical logging namespaces to determine the logging

configuration for each logger. Logging namespaces are dot delimited names with the

following syntax:

[a-zA-Z][a-zA-Z0-9_]*(\.[a-zA-Z][a-zA-Z0-9_]*)*

Logging namespaces work in a hierarchical manner by inheriting the configuration of the

nearest ancestor unless overridden in the immediate logger namespace configuration. For

example, if the logging configuration supplied during the configuration of the logging system

is:

com.borasoftware {
 level: info
}

 com.borasoftware.a {
 level: debug
}

then a logger instantiated with the namespace:com.borasoftware

Balau::Logger & logger = Balau::Logger::getLogger("com.borasoftware");

will log to info level. If a logger is instantiated with the namespace:com.borasoftware.a

Balau::Logger & logger = Balau::Logger::getLogger("com.borasoftware.a");

then it will log to debug level. If a logger is instantiated with the com.borasoftware.b.c

namespace (i.e. a namespace that is not directly specified in the configuration but has

ancestor):com.borasoftware

Balau::Logger & logger = Balau::Logger::getLogger("com.borasoftware.b.c");

Balau core C++ library 79

then this logger will log to the level specified by .com.borasoftware

If a logger is instantiated with an unknown namespace with no known ancestors, the global

logging namespace configuration will be used. The global namespace may also be

configured in the logging configuration by using the special "." namespace.

Configuration file

Overview

The configuration file format is standard . Each composite propertyenvironment configuration

defines a namespace key and a set of configuration value properties within.

The logging system can be configured via a standalone configuration file, or can be

configured from the injector's loaded environment configuration by obtaining a suitable

 instance from the injector and calling the EnvironmentProperties Logger::configure

 function.(EnvironmentProperties)

In addition to the following documentation, the pageslogging environment configuration

provide reference documentation on each logging value property.

The global logging namespace is specified via the special "." key. This namespace can be

configured in the same way as any other namespace, and forms the global ancestor to all

namespaces. It is thus useful to place any configuration applicable to all loggers in the global

namespace.

Here is an example of a simple logging configuration:

. {
 level = warn
 format = %Y-%m-%d %H:%M:%S [%thread] %level - %namespace - %message
}

 com.borasoftware {
 level = info
}

 com.borasoftware.a {
 level = debug
}

This example configuration configures three logging namespaces. The global namespace

logging level is set to warn. Two other descendant namespaces' levels are also set. All

loggers will log to the default stdout/stderr streams.

The example configuration configures the global namespace with a logging message format.

Unless this is reconfigured in a descendant namespace, all loggers will use this format.

80 Balau core C++ library

Configuration macros

Logging configurations may contain the following macro placeholders in the output stream

specifications. With the exception of the placeholder, these placeholders are${date}

expanded during logging system configuration.

Placeholder Expansion

${user.home}
The path to the user's home directory in file URI format (example:

).file:///home/bob

${executable} The name of the executable.

${date} The current date.

For example, the logging system could be configured to log all output to a file contained

within the user's home directory and with the same name as the executable by using the

following stream option:

. {
 stream = ${user.home}/${executable}.log
}

The date placeholder

This functionality is not yet implemented.

Unlike the other placeholders, the placeholder is not expanded before configuration${date}

parsing. Instead, the placeholder is processed later on by the stream class.${date}

Basic usage

When a stream URI contains the placeholder, the logging system will automatically${date}

change the stream URI each day with the placeholder updated to the new current${date}

date. This will result in the logging output changing at midnight each day. This can be useful

when a new logging file is required each day, without requiring an application restart.

As this functionality is implemented in the class, custom logging streamFileLoggingStream

classes are responsible for implementing this functionality if required. If a custom logging

stream implementation is specified in the logging configuration, the associated custom

logging stream class will need to be programmed with the necessary logic to recognise and

expand the placeholder, and close/open the relevant output streams each day.${date}

The previous configuration example with with the placeholder added to the file${date}

logging stream is:

Balau core C++ library 81

. {
 stream = ${user.home}/${executable}-${date}.log
}

Date options

Date placeholders may take up to two options. These options are placed within the {}

brackets of the placeholder, after the placeholder keyword. The options are whitespacedate

delimited.

The options are as follows.

Option Description

Compress
When the "compress" option is specified, the previous logging file is

compressed when the day advances.

Date format

The text format of the date used in the logging file names. When not

specified, the default %F is used. Permitted flags are:

aAbBcCdeFgGhjmuUVwWyY. Permitted characters between flags are '-'

and '_'.

Information on the date flags is available in the HH date library's documentation. See the

 documentation for more details on the date library.DateTime

Configuration options

The following configuration options are currently defined.

OPTION NAME DESCRIPTION

level Logging level

format Message format specification

flush
Whether to automatically flush after each message (default is

to flush)

stream Output stream specification for all logging levels

trace-stream Output stream specification for trace logging

debug-stream Output stream specification for debug logging

info-stream Output stream specification for info logging

warn-stream Output stream specification for warn logging

error-stream Output stream specification for error logging

82 Balau core C++ library

Logging level

The logging level option value is just the level (trace, debug, info, warn, error, none). The

value text is case insensitive.

Format specification

The message format specification consists of a printf like format string that contains text and

format specifiers. The available format specifiers are:

Specifier Description

%Y the year as four digits

%y the year as two digits

%m the month as two digits

%d the day of the month

%H the hour as two digits

%M the minute as two digits

%S
the seconds as two digits followed by six digits representing the

microsecond remainder

%thread the thread name if one has been set or the thread id otherwise

%level the logging level in lowercase

%LEVEL the logging level in uppercase

%namespace the logger's logging namespace

%ns

an abbreviation of the logger's logging namespace, created by printing

each identifier's first letter only, apart from the last identifier which is

printed in its entirety

%filename the source code file name

%filepath the full path to the source code file

%line the line number in the source code file

%message the message, after stringification and combination of all arguments

%% the percent character

%" the double quotation character

For the specifier, the thread name can be set by calling %thread Util::ThreadName::setName

 from the thread. The class is a utility that stores a thread-local(name) Util::ThreadName

name that is used by the logging system for the purpose of replacing the thread id with a

meaningful name. Note that currently, the name of a thread can only be set from within the

thread itself.

The default format specification if none is supplied or inherited for a particular namespace is:

Balau core C++ library 83

%Y-%m-%d %H:%M:%S [%thread] %LEVEL - %namespace - %message

An alternative to the default logging format that includes the filename and line number could

be:

%Y-%m-%d %H:%M:%S %filename:%line - [%thread] %LEVEL - %namespace - %message

Log messages resulting from this format would be similar to the following:

2018-03-26 18:19:59.904675835 LoggerTest.cpp:139 - [main] INFO - - hello bob
2018-03-26 18:19:59.904699204 LoggerTest.cpp:140 - [main] INFO - com.borasoftware - hello C++

Flush

The flush option allows automatic flushing to be selectively disabled for different logging

namespaces.

By default, loggers automatically flush the writer stream after writing a logging line. This

ensures that logging is physically written to output streams promptly. Automatic flushing can

be disabled for a namespace by specifying in the namespace configuration.flush: false

Stream specifications

The stream specification options specify the output stream(s) to be created and written to for

the logging namespace. The value of the options is a URI:

stream = [uri]
[level]-stream = [uri]

where is a real or pseudo URI identifying a stream to write to. Stream URIs are[uri]

supported by logging system plugins.

URIs that are handled by default are:

standard localhost file URLs (file:///path/to/file);

stdout/stderr file descriptor pseudo schemes.

Built in stream configuration examples:

stream = file:///path/to/file
warn-stream = stdout
error-stream = stderr

84 Balau core C++ library

Output streams for other types of URI are instantiated by logging system plugins (see next

section).

The file descriptor pseudo schemes log to the application's standard output and error

streams.

For a particular stream specification, the logging system will instantiate an output stream if

the stream type is recognised by the logging system or one of the registered plugins. If a

stream specification is not recognised, the logging system will configure the logger to the null

output stream and will log an error message to the output stream of the global logging

namespace.

The different stream specification options correspond to non-level specific and level specific

stream configurations. The non-level specific option sets a single stream for allstream

logging levels. All log output for a particular namespace will log to this stream when this

option is specified with no other stream options.

The level specific options allow different output streams to be configured for[level]-stream

different logging levels. Each level specific stream option configures the log output of that

level.

When one or more level specific options are specified and the non-level[level]-stream

specific option is not specified, the streams of levels that do not have any streamstream

specification will be determined via the stream configurations of adjacent levels. In this case,

the priority of the adjacent level specific stream configurations is first downwards, then

upwards. For example, if the info level is configured via a level specific stream configuration

to log to stdout and the error level is configured via a level specific stream configuration to

log to stderr, the warn level will be implicitly configured to log to stderr and the trace and

debug levels will be implicitly configured to log to stdout.

If the non-level specific option is specified along with one or more level specific stream [level]

 options, all levels without level specific options will be configured to-stream [level]-stream

the non-level specific stream setting.

Some additional examples will make this concept more clear:

com.borasoftware {
 warn-stream = stdout
 error-stream = stderr
}

The above specification will configure the com.borasoftware logger to output all trace,

debug, info, and warn level log messages to stdout, and all error level log messages to

stderr.

Balau core C++ library 85

com.borasoftware {
 debug-stream = ${user.home}/.bora/${executable}/debug.log
 warn-stream = stdout
 error-stream = stderr
}

The above specification will configure the com.borasoftware logger to output all trace and

debug level log messages to the specified file, all info and warn level log messages to

stdout, and all error level log messages to stderr.

If, for example the user home directory is and the executable name is /home/bob BalauTests

, the resulting debug stream for the above example would be file:///home/bob/.bora

./BalauTests/debug.log

com.borasoftware {
 stream = stdout
 error-stream = stderr
}

The above specification will configure the com.borasoftware logger to output all logging to

stdout apart from the error stream, which will be configured to output to stderr.

Logging stream plugins

Additional logging streams may be registered with the logging system before reconfiguring

the system with schemes referencing these custom logging streams. This is achieved by

deriving a new class from the base class, and creating a factory functionLoggingStream

with the same signature as specified by the typedef.LoggingStreamFactory

The base class has the following virtual methods:LoggingStream

class LoggingStream {
 public: virtual void write(const std::string & str) = 0;
 public: virtual void flush() = 0;
};

The string passed to the write method is the pre-formatted message.

The signature for logging stream factory functions is:

using LoggingStreamFactory = LoggingStream * (*)(const std::string & uri);

The logging system is a pointer container for the logging streams, thus the logging stream

factories return a raw pointer instead of a pointer container.

86 Balau core C++ library

1.

2.

3.

4.

5.

The URI passed to logging stream factory functions is the URI from the logging configuration

text, with all macro placeholders expanded apart from the placeholder. If the URI${date}

specified in the logging configuration contains one or more occurrences of the macro${date}

placeholder, this placeholder will be present in the URI .

The factory function for the custom logging stream needs to be registered with the logging

system by calling:

Logger::registerLoggingStreamFactory(const std::string & scheme, LoggingStreamFactory factory);

The uri string of the custom logging stream is not specified by the logging system. The

custom logging stream class must parse the supplied uri with its own DSL.

Design

This section provides a summary of the design of the logging system. It is not necessary to

read this section in order to use the logging system.

Overview

The logging system is based around the public class and the private Logger LoggingState

class. The class is instantiated as a lazy singleton. The logging state containsLoggingState

a tree of loggers, plus pools for logging streams, log items, and composed log item vectors.

The logging system contains a mutex that is locked when a logger is requested and when a

reconfiguration is performed. Logging does not lock the mutex, hence concurrent logging

and reconfiguration is supported.

Logging configuration text supplied to the logging system is parsed via the standard

hierarchical .properties parser

The logging system is configured at application startup, in the first call to either Logger::

 or .getInstance Logger::configure

If a call to is the first call, the following procedure occurs:Logger::getInstance

a default logging configuration is created;

an override logging configuration is created from the contents of the balau-logging.

 file if it exists;hconf

the logging configuration created from (if it exists) is cascadedbalau-logging.hconf

onto the default logging configuration;

the properties of each resulting parent logger are propagated onto the children;

the logging levels of the loggers are set from the resulting level properties;

Balau core C++ library 87

6.

7.

1.

2.

3.

4.

5.

6.

7.

8.

the streams of the loggers are set from the stream properties;

the message format item vectors of the loggers are set from the message format

properties.

If a call to is the first call or on any subsequent call to ,Logger::configure Logger::configure

the following procedure occurs:

a default logging configuration is created;

an override logging configuration is created from the contents of the string passed to

the method;configure()

the new logging configuration is cascaded onto the default logging configuration;

the properties of each resulting parent logger are propagated onto the children;

the properties of the existing loggers are wiped, ready for the new properties;

the logging levels of the loggers are set from the resulting level properties;

the streams of the loggers are set from the stream properties;

the message format item vectors of the loggers are set from the message format

properties.

Concurrency

Configuration of the logging system is covered by a mutex. Only a single configuration

execution may take place at any one time. The mutex is not locked on normal logging calls.

During configuration or reconfiguration, all missing streams, log items, and log item vectors

are created and pooled. Subsequently, the atomic fields of new or existing loggers are set.

This two stage process allows concurrent configuration and logging to occur without

invalidating any of the existing loggers' state. In addition, the pooling ensures that there is no

duplication of identical logging state, minimising the memory requirements of the logging

system when reconfigured.

Due to memory ordering, the atomic reads performed when logging are free reads onTSO

x86/x86-64 platforms.

The class has the following fields that are read when logging a message. All mutableLogger

fields are implemented as atomic fields.

88 Balau core C++ library

Field name Comments

namespace Doesn't change for the lifetime of the logger.

ns Doesn't change for the lifetime of the logger.

level Logging levels are read with semantics.std::memory_order_relaxed

stream[x]

The set of stream pointers is kept within a std::array<std::

. Pointers are read with atomic<LoggingStream *>, 5> std::

 semantics.memory_order_relaxed

loggerItems

The entire log item vector is iterated over when logging a message. A

pointer to the vector is read before iteration. The pointer is read with std::

 semantics.memory_order_acquire

All mutable logger state is updated with semantics duringstd::memory_order_seq_cst

reconfiguration.

Balau core C++ library 89

Test runner
Overview

A unit testing framework, allowing tests to be defined as member functions in test group

classes. The test runner contains four different execution models, allowing single threaded

and concurrent runs, in and out of process.

Unlike many other C++ unit test frameworks, the Balau unit test framework does not use

preprocessor macros. Instead, tests are defined as parameterless instance methods of test

group classes, and assertions are inspired template functions. A complete testHamcrest

class forms a test group in the resulting run. Test classes linked into the test application are

automatically instantiated and register themselves with the test framework.

The Balau unit test framework does not use any external code generation tool to simulate

the effects of the Java annotations in Java based unit test frameworks such as and JUnit

, from which many C++ unit test frameworks are inspired. Instead, the test methodsTestNG

of a class are simply added to the class' test run by specifying them within the constructor.

Test classes typically mirror the production code classes. Using a friend class declaration in

a production class allows the test class' methods to test private functions if this is required.

The Balau test runner has four execution models. The models are:

single process, single threaded;

single process, multi-threaded;

multiple worker process;

separate process per test.

The execution model can be selected by passing the relevant execution model enum value

to the test runner initialisation method from the test application main function.

All tests are run by default. Selective running of tests is achieved by passing test group / test

case names to the test runner initialisation method, via the and parameters in theargc argv

test application's main function. Simple globbing can also be used to specify multiple tests to

run.

Quick start

#include <Balau/Testing/TestRunner.hpp>

http://hamcrest.org/
https://junit.org
https://testng.org

90 Balau core C++ library

Test groups

Tests are defined within test groups. Each test group is defined as a class.

Test group classes inherit from the test runner base template class,Testing::TestGroup

using . Each test case is an instance method of the test class, which takes zeroCRTP

parameters and returns void. The constructor body of a test class registers test methods via

calls to the method or the convenience macro.registerTestCase RegisterTestCase

// Example test group from the Balau unit tests.

 struct ObjectTrieTest : public Testing::TestGroup<ObjectTrieTest> {
 ObjectTrieTest() {
 RegisterTestCase(uIntTrieBuild);
 RegisterTestCase(uIntTrieCopy);
 RegisterTestCase(uIntTreeDepthIterate);
 RegisterTestCase(uIntTreeDepthIterateForLoop);
 RegisterTestCase(uIntTreeBreadthIterate);
 RegisterTestCase(fluentBuild);
 }

 void uIntTrieBuild();
 void uIntTrieCopy();
 void uIntTreeDepthIterate();
 void uIntTreeDepthIterateForLoop();
 void uIntTreeBreadthIterate();
 void fluentBuild();
};

Test application

The test application executes the test runner by calling the test runner's method. Withinrun

the main function, the test runner is initialised via one of the runner's initialisation methods.

The most common methods to use are the ones that take and arguments. The run argc argv

 and arguments of the test application's main function are passed to the testargc argv

runner's method, in order to parse the command line arguments.run

#include <Balau/Testing/TestRunner.hpp>

 using namespace Balau::Testing;

 int main(int argc, char * argv[]) {
 return TestRunner::run(argc, argv);
}

The test runner uses the command line parser to parse a space separated command line

which can also contain globbed test name patterns to run.

// Example test group from the Balau unit tests.

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

Balau core C++ library 91

The following command line options are available.

Short option Long option
Has

value
Description

-e
--execution-

model
yes The execution model (default = SingleThreaded).

-n
--

namespaces
no

Use namespaces in test group names (default is

not to use).

-p --pause no Pause at exit (default is not to pause).

-c --concurrency yes
The number of threads or processes to use to run

the tests (default = detect).

-r --report-folder yes Generate test reports in the specified folder.

-h --help no Displays this help message.

The test runner will interpret the first element of as the execution model (caseargv

insensitive) if it is a valid execution model, and the remainder of the command line

arguments as a space/comma delimited list of globbed test names to run. If the first element

of is not a valid execution model, it will form the head of the globbed test name list andargv

the execution model will be used by default.SingleThreaded

In both cases, the zeroth element of is assumed to be the test application path and isargv

ignored. If this is not the case, then the starting element can be specified as an optional

argument of the call.run

Selecting tests

Selective running of test cases is achieved by providing a space/comma delimited list of

globbed test names to the test runner's method. If no list is provided, all test cases arerun

run.

There are two globbing patterns available:

Glob character Meaning

* Match zero or more characters.

? Match exactly a single character.

Multiple patterns can be specified on the command line, either with a single command line

argument containing a comma delimited list, or via multiple command line arguments

representing a space delimited list.

92 Balau core C++ library

Run the Balau test application with the worker processes execution model
and specifying a subset of tests via a comma delimited list of patterns.

 BalauTests -e WorkerProcesses Injector::*,Environment::*

Run the Balau test application with the worker processes execution model
and specifying a subset of tests via a space delimited list of patterns.

 BalauTests -e WorkerProcesses Injector::* Environment::*

Execution models

The test runner has four execution models. The models are:

single process, single threaded;

single process, multi-threaded;

worker process;

process per test.

For the multi-threaded and worker process execution models, the concurrency level (the

number of threads or processes) can be optionally specified as an argument to the test

runner constructor. The concurrency level is also used to specify the number of

simultaneous processes to spawn in the process per test execution model.

If the concurrency level is not specified, the default value equal to the number of CPU cores

is used.

Defining tests

Test groups

Tests are grouped inside test classes.

Test classes derive from the base class template, using . EachTesting::TestGroup CRTP

test is an instance method of the test class, which takes zero parameters and returns void.

The constructor body of a test class registers test methods via calls to the registerTestCase

method or the convenience macro.RegisterTestCase

The following is the header of a test class which has four test methods.

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

Balau core C++ library 93

struct CommandLineTest : public Testing::TestGroup<CommandLineTest> {
 CommandLineTest() {
 RegisterTestCase(basicTest);
 RegisterTestCase(failingTest);
 RegisterTestCase(finalValueTest);
 RegisterTestCase(numericValueTest);
 }

 void basicTest();
 void failingTest();
 void finalValueTest();
 void numericValueTest();
};

The result of running the above test class follows. One of the tests is failing.

94 Balau core C++ library

------------------------- STARTING TESTS -------------------------

Run type = single process, multi-threaded (2 threads)

++ Running test group CommandLineTest

 - Running test CommandLineTest::basicTest - passed. Duration = 174μs
 - Running test CommandLineTest::failingTest - FAILED!

Assertion failed:
true != false

 Duration = 140us

 - Running test CommandLineTest::finalValueTest - passed. Duration = 147μs
 - Running test CommandLineTest::numericValueTest - passed. Duration = 354μs

== CommandLineTest group completed. Group duration (core clock time) = 675μs

------------------------- COMPLETED TESTS ------------------------

Total duration (test run clock time) = 675μs
Average duration (test run clock time) = 225μs
Total duration (application clock time) = 696μs

THERE WERE TEST FAILURES.

Total tests run: 4

 3 tests passed
 1 test failed

Failed tests:
 CommandLineTest::failingTest

Test application process with pid 13090 finished execution.
Process finished with exit code 0

Setup and teardown

Test classes may include setup and teardown methods. Due to the multi-process design of

the test runner, only test setup/teardown methods are supported (i.e. there are no class

setup/teardown methods included).

The following is a test class which has test setup and teardown methods defined:

Balau core C++ library 95

class CommandLineTest : public Testing::TestGroup<CommandLineTest> {
 public: CommandLineTest() {
 RegisterTestCase(basicTest);
 RegisterTestCase(finalValueTest);
 RegisterTestCase(numericValueTest);
 }

 void basicTest();
 void finalValueTest();
 void numericValueTest();

 private: void setup() override {
 log(" CommandLineTest::setup() called.\n");
 }

 private: void teardown() override {
 log(" CommandLineTest::teardown() called.\n");
 }
};

The result of running the above test class follows.

------------------------- STARTING TESTS -------------------------

Run type = single process, single threaded

++ Running test group CommandLineTest

 - Running test CommandLineTest::basicTest - passed. Duration = 65μs
 CommandLineTest::setup() called.
 CommandLineTest::teardown() called.
 - Running test CommandLineTest::finalValueTest - passed. Duration = 47μs
 CommandLineTest::setup() called.
 CommandLineTest::teardown() called.
 - Running test CommandLineTest::numericValueTest - passed. Duration = 191μs

== CommandLineTest group completed. Group duration (core clock time) = 303μs

------------------------- COMPLETED TESTS ------------------------

Total duration (test run clock time) = 303μs
Average duration (test run clock time) = 101μs
Total duration (application clock time) = 393μs

ALL TESTS PASSED: 3 tests executed
Test application process with pid 13431 finished execution.
Process finished with exit code 0

96 Balau core C++ library

Assertions

The test runner contains inspired assertion utilities that are available for use in testHamcrest

methods and setup/teardown methods.

In order to use the assertions, suitable functions/methods will need to exist foroperator ==

the types of the objects specified in the assertion statements. In addition, each type will

require a function to be defined. These are used by the assertion render functions.toString

Refer to the documentation on the for more information.universal to-string function

In order for the compiler to pick up the correct and functions, thetoString operator ==

header file(s) containing the functions must be included before the TestRunner.hpp

header is included.

When writing tests in a file, it is convenient to import the assertion function symbols via.cpp

a using directive:

// Import the assertion functions.
using namespace Balau::Testing;

Examples of assertions can be found in the test file.AssertionsTestData.hpp

There are two ways to use the assertion functions. The first is directly:

Balau::Testing::assertThat(actual, is(expected));

When the assertion fails, the assertion will log an error by calling on each of thetoString

arguments and then throw a .Balau::Exception::AssertionException

The alternative and recommended way of using the assertion functions is via the AssertThat

macro. This macro also performs the assertion via Balau::Testing::assertThat, but in addition

to the assertion, the and macros are used in order to supply the source__FILE__ __LINE__

code location to the assertion function for logging.

AssertThat(actual, is(expected));

As the token is a macro, it should not be prefixed by a namespace.AssertThat

Comparisons

Assertions for equality and other standard comparisons are available:

// Import the assertion functions.

http://hamcrest.org/

Balau core C++ library 97

AssertThat(actual, is(expected));
 AssertThat(actual, isNot(expected));
 AssertThat(actual, isGreaterThan(expected));
 AssertThat(actual, isLessThan(expected));
 AssertThat(actual, isGreaterThanOrEqual(expected));
 AssertThat(actual, isLessThanOrEqual(expected));
 AssertThat(actual, isAlmostEqual(expected, errorLimit));

These comparison assertions require that the implicated types have corresponding

comparison functions defined. For the assertion, both and are required.isAlmostEqual <= >=

Other types of comparison such as startsWith, endsWith, etc. are also available:

AssertThat(actual, startsWith(expected));
 AssertThat(actual, endsWith(expected));
 AssertThat(actual, contains(expected));
 AssertThat(actual, doesNotContain(expected));

However, these assertions require that the type implicated in the call have a std::basic_string

type API (length, substr, begin, end) and require the Balau::contains(actual, expected)

function to be defined for the actual and expected types, so unless you define such an API

and helper function for your types, their use is limited to .std::basic_string<T>

Exceptions

Assertions for expected thrown exceptions are available with a similar Hamcrest like API:

AssertThat(function, throws<T>());
 AssertThat(function, throws(expectedException));
 AssertThat(function, throws(expectedException, comparisonFunction));

The usage of these assertions differs from the comparison assertions. The first argument

passed to the call is a function, typically supplied as a lambda:assertThat

AssertThat([&] () { foo(); }, throws<T>());
 AssertThat([&] () { foo(); }, throws(expectedException));
 AssertThat([&] () { foo(); }, throws(expectedException, comparisonFunction));

The function is called during the assertion call, and any exception thrown is then examined.

The first call verifies that the expected type of exception is thrown. The second and third

calls examine the contents of the thrown exception, compared to the supplied exception. In

order to use the second call, the exception type must have an equality operator function

defined for it in order for the code to compile. The third call allows a comparison function to

be passed to the call, which will be used instead of the equality operator.

98 Balau core C++ library

In order to use the exception instance assertion versions, a suitable functionoperator ==

must be defined for the exception, in order that the test framework may compare the actual

and expected exceptions. No such function is required in order to use the exception type

assertion version. A suitable function will also be required for the exception class, intoString

order for the test runner to print the exception contents during assertion failures.

Examples of the use of the first and third exception assertion calls can be seen in the

 class:CommandLineTest

// Exception type assertion.
AssertThat([&] () { commandLine.getOption(KEY9); }, throws<OptionValueException>());

 auto comp = [] (auto & a, auto & e) { return std::string(a.what()) == std::string(e.what()); };
 AssertThat([&] () { commandLine.getOption(KEY9); }, throws(OptionValueException("key9"), comp));

Renderers

The assertion methods call the following function to print the content of the actual and

expected values in the case of an assertion failure:

namespace Balau {

 namespace Renderers {

 template <typename A, typename E>
 std::string render(const A & actual, const E & expected);

 }

 } // namespace Balau

The standard renderer calls the Balau functions for the inputs and prints eachtoString

resulting line side by side, along with an infix or according to line equality.== !=

Custom failure message renderers may be added by specialising the above template

function (within the Balau namespace):

Logging

Test output

The test runner has configurable test logging, allowing the test log to be written to a variety

of outputs. This is achieved by passing one or more derived classes to the testTestWriter

runner's method. The following test writers are defined in the header:run TestRunner.hpp

// Exception type assertion.

// Exception contents assertion.

// namespace Renderers

// namespace Balau

Balau core C++ library 99

Class name Description

StdOutTestWriter Write to stdout.

FileTestWriter Write to the specified file.

OStreamTestWriter Write to the previously constructed output stream.

LogWriter Write to the specified Balau logger.

Other test writers may be created if required, by deriving from the base class.TestWriter

In order to register test writers, they are specified as arguments to the test runner's run

method:

int main(int argc, char * argv[]) {

 TestRunner::run(
 argc, argv, 1, false, false
 , LogWriter("balau.test.output")
 , FileTestWriter(Resource::File("testOutput.log"))
);
}

If no test writers are specified, the test runner will log to stdout by default.

Test logging

The base class contains two logging methods that can be used to log output toTestGroup

the test runner writers:

///
/// Write additional logging to the test writers.
///
protected: void log(const std::string & string);

 protected: void logLine(const std::string & string = "");

These methods can be used anywhere in a test class to log additional test messages.

An alternative technique of logging test messages is to use the Balau andlogging framework

construct the test runner to log test results to a Balau logger. This allows the full parameter

parsing of the logging framework to be used within the test class log messages. There are

two ways of configuring the logging system for the test application.

// Run the test runner with two writers.

///
/// Write additional logging to the test writers.
///

///
/// Write additional logging to the test writers.
/// A line break is written after the string.
///

100 Balau core C++ library

1.

2.

Implicitly configure the logging system with a file in the testbalau-logging.hconf

application binary directory (a CMake custom command will be required to copy the

logging configuration file to the build folder - see the Balau CMakeLists.txt for an

example).

Explicitly configure the logging system by calling fromLogger::configure(std::string)

within the test application main function, before running the tests.

More information on logging system configuration is available in the documentation.Logging

Test reports

In addition to test result logging, the test runner can be configured to generate XML based

test run report files.

The default reporter provides Maven Surefire plugin schema based XML reports. Alternative

report generators may be defined by deriving from the base class andTestReportGenerator

providing an instance of the reporter class to the test runner function.run

Test utilities

The test framework utilities are designed to provide domain specific help in accomplishing

certain management tasks required during testing. The test framework utilities are in an

early stage of development, and currently only a pair of network related test utility functions

are defined.

Network

The test framework network utilities provide a way of getting a free TCP ports for tests.

There are two functions defined:

initialiseWithFreeTcpPort;

getFreeTcpPort.

These two functions are normally used together. The functioninitialiseWithFreeTcpPort

takes some code to execute. This code is part of the test and should initialise the network

state that requires the port.

From within the code supplied to the function, the initialiseWithFreeTcpPort getFreeTcpPort

function should be called in order to obtain a free port that will be used to initialise the

network state.

There are two possible failures that may occur when attempting to obtain a free port. The

first is that the specified port is not available. This issue is mitigated with the call to

Balau core C++ library 101

. This function takes start port and port count arguments, and tests for thegetFreeTcpPort

availability of a free port between the specified port range.

Once a free port has been obtained, an attempt to bind to it can be made by the test code.

However, there is an inherent race condition present. If another process binds to the port

between the call to and the subsequent attempt to bind, the binding will fail.getFreeTcpPort

In order to mitigate this race condition, the function will repeatedlyinitialiseWithFreeTcpPort

run the initialisation code until a successful binding has been achieved. Each time the

initialisation code is run, a new free port is obtained via the call.getFreeTcpPort

Examples of this pattern being used can be seen in the HTTP network tests in the Balau test

suite. The following is an extract from one of the tests in the FileServingHttpWebAppTest

class.

const unsigned short port = Testing::NetworkTesting::initialiseWithFreeTcpPort(
 [&server, documentRoot, testPortStart] () {
 auto endpoint = makeEndpoint(
 "127.0.0.1", Testing::NetworkTesting::getFreeTcpPort(testPortStart, 50)
);

 auto clock = std::shared_ptr<System::Clock>(new System::SystemClock());

 server = std::make_shared<HttpServer>(
 clock, "BalauTest", endpoint, "FileHandler", 4, documentRoot
);

 server->startAsync();
 return server->getPort();
 }
);

In the above code, the race condition occurs between the call to and the callgetFreeTcpPort

to construct the HTTP server.

Test application

Main function

All test group classes that are linked into the test application are automatically instantiated

and registered with the test runner. The function of the test application should thus onlymain

call one of the methods of the test runner.run

Example function:main

102 Balau core C++ library

#include <Balau/Testing/TestRunner.hpp>

 using namespace Balau::Testing;

 int main(int argc, char * argv[]) {
 return TestRunner::run(argc, argv);
}

Selecting tests

Selective running of test cases is achieved by providing a space/comma delimited list of

globbed test names to the test runner's method. If no list is provided, all test cases arerun

run.

There are two globbing patterns available:

Glob character Meaning

* Match zero or more characters.

? Match exactly a single character.

Multiple patterns can be specified on the command line, either with a single command line

argument containing a comma delimited list, or via multiple command line arguments

representing a space delimited list.

Run the Balau test application with the worker processes execution model
and specifying a subset of tests via a comma delimited list of patterns.

 BalauTests -e WorkerProcesses Injector*,Environment*

Run the Balau test application with the worker processes execution model
and specifying a subset of tests via a space delimited list of patterns.

 BalauTests -e WorkerProcesses Injector* Environment*

Model selection

TODO update documentation to reflect command line parsing

The test execution model to run can be specified either as the first argument of the

command line by calling the method, or explicitly by using other TestRunner::run(argc, argv)

 method overloads, most commonly the overload.run TestRunner::run(model, argc, argv)

Balau core C++ library 103

#include <Balau/Testing/TestRunner.hpp>

 using namespace Balau::Testing;

 int main(int argc, char * argv[]) {

 return TestRunner::run(WorkerProcesses, argc, argv);
}

The approach can be useful for teams that run a continuousTestRunner::run(argc, argv)

integration server that requires a or execution model,WorkerProcesses ProcessPerTest

whilst allowing developers to set a or execution model inSingleThreaded WorkerThreads

their run configurations.

If the method is used and no command line arguments areTestRunner::run(argc, argv)

supplied, the default execution model is used.SingleThreaded

Execution models

The test runner has four execution models. The models are:

single process, single threaded;

single process, multi-threaded;

worker process;

process per test.

Each execution model has advantages and disadvantages. Typically, the single process

execution models would be used whilst running tests on the developer's workstation, and

one of the multiple process execution models would be used when running on a continuous

integration server.

Single threaded

The single threaded execution model executes each test in turn, within the test application

main thread. This is the simplest of the execution models. If a test causes a segmentation

fault, the test application will terminate.

Reasons to use the single threaded execution model include:

ensures any possible complexity introduced by the test framework is eliminated;

an in-process execution model allows direct debugging.

The disadvantages of the single threaded execution model are:

// Run the tests with the worker processes execution model.

104 Balau core C++ library

if a test causes a segmentation fault, the test application will terminate;

due to the single threaded nature of this execution model, test runs will take longer

than with the other execution models.

Multi-threaded

The multi-threaded execution model executes tests in parallel, in a fixed number of worker

threads in the test application. Each worker thread executes by claiming the next available

test and running it. As this execution model is also single process, the test application will

terminate if a test causes a segmentation fault.

Reasons to use the multi-threaded execution model include:

an in-process execution model allows direct debugging;

running tests in parallel uses all CPU cores and ensures a faster test run.

The disadvantage of the multi-threaded execution model is that if a test causes a

segmentation fault, the test application will terminate.

Worker process

The worker process execution model executes tests in parallel, in a fixed number of child

processes spawned by the test application. Each worker process executes by claiming the

next available test and running it.

As this execution model is multiple process, the test application will not terminate if a test

causes a segmentation fault. Instead, the child process will terminate and the parent process

will spawn a replacement child process to continue testing.

Reasons to use the worker process execution model include:

tests that cause segmentation faults will not result in test application termination;

running tests in parallel uses all CPU cores and ensures a faster test run.

The disadvantage of the worker process execution model is that breakpoints will not be hit in

the child processes.

Process per test

The process per test execution model executes tests in parallel, by forking a new child

process for each test.

Balau core C++ library 105

As this execution model is multiple process, the test application will not terminate if a test

causes a segmentation fault. Instead, only the child process for the test causing the

segmentation fault will terminate.

Reasons to use the process per test execution model include:

the entire process' state is reset for each test;

tests that cause segmentation faults will not result in test application termination;

running tests in parallel uses all CPU cores and ensures a faster test run.

The disadvantages of the process per test execution model are:

breakpoints will not be hit in the child processes;

the forking of a new child process for each test may possibly cause a reduction in

performance compared to the worker process execution model (this does not appear

to be the case on x86-64 Linux).

Performance

The following test run timing information was obtained by running the Balau unit tests

(2018.9.1 release) for each execution model. The CPU used in the test was an Intel i7-

8550U (4 core with hyper-threading), with turbo turned off. The default concurrency of 8

threads/processes was used for the multi-threaded, worker process, and process per test

execution models.

The best result of 10 runs was taken for each execution model. The timing values indicate

clock time, thus they do not take into account context switches where a CPU core is

executing other application's background code. The total duration (test run clock time) is the

sum of all the test's execution times. For concurrent execution models, this is spread across

the allocated cores. The average duration is the test run clock time total duration divided by

the number of tests run. The total duration (application clock time) is the duration of the test

application's main process.

In the Balau test suite, the logger tests are automatically disabled during multi-threaded and

worker process runs. Consequently, these test groups were manually disabled for all the the

runs in this performance evaluation. In addition, all test groups that involve network

functionality were also disabled in order to avoid network latency issues skewing results.

106 Balau core C++ library

----------------- SINGLE THREADED ------------------

Total duration (test run clock time) = 1.1s
Average duration (test run clock time) = 4.2ms
Total duration (application clock time) = 1.1s

***** ALL TESTS PASSED - 262 tests executed *****

------------------ MULTI-THREADED ------------------

Total duration (test run clock time) = 1.5s
Average duration (test run clock time) = 5.6ms
Total duration (application clock time) = 345.8ms

***** ALL TESTS PASSED - 262 tests executed *****

----------------- WORKER PROCESSES -----------------

Total duration (test run clock time) = 1.5s
Average duration (test run clock time) = 5.8ms
Total duration (application clock time) = 384.0ms

***** ALL TESTS PASSED - 262 tests executed *****

----------------- PROCESS PER TEST -----------------

Total duration (test run clock time) = 1.2s
Average duration (test run clock time) = 4.7ms
Total duration (application clock time) = 382.7ms

***** ALL TESTS PASSED - 262 tests executed *****

It can be seen that the single threaded executor has the lower overhead per test, but the

other executors nevertheless reduce the execution time significantly when run on a multi-

core CPU. If an appreciable amount of tests with significant I/O waits were present, the

speed up would approach the number of allocated cores.

The Balau unit test execution times range from microseconds to tens of milliseconds, and

there were 262 tests run in the above timing runs. A complex C++ application could have

one or two orders of magnitude more tests than this, and it is likely that the average

execution time of the tests would be greater on average. Thus the overall execution times

presented above could thus be multiplied by a factor of several orders of magnitude in order

to represent a real world scenario.

CI configuration

This section only discusses continuous integration via a CMake target.

Balau core C++ library 107

In order to create CI jobs in tools such as , the test application will require a CMakeJenkins

target to run. This can be achieved with the following configuration in the CMakeLists.txt file.

##################### TEST RUNNER #####################

add_custom_target(
 RunTests
 ALL
 WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/bin
 COMMAND TestApp
)

 add_dependencies(RunTests TestApp)

This custom target can also be used directly from the command line if required, by typing

.make RunTests

In the CMake custom target definition, is the name of the target that will beRunTests

specified in the CI jobs, and is the test application executable target. After addingTestApp

the dependency declaration, running the target will first build the test application,RunTests

then will execute it.

The test application will return 0 on success and 1 on failure. This will be picked up by the CI

job runner in order to determine test run success.

https://jenkins.io/

108 Balau core C++ library

Balau core C++ library 109

Characters and strings
Overview

The Balau library has been designed primarily to work with external character data encoded

in UTF-8 and internal character data encoded in UTF-8 and UTF-32. UTF-8 is used for

persisted strings, data transfer, and in-memory strings. UTF-32 is used in code point

processing algorithms that require a fixed size code point type. This allows a normally

compact representation in memory, in transit, and in storage, but provides a fixed width

character type for processing when required.

The C++ language character type is used for UTF-8 data and the characterchar char32_t

type is used for UTF-32 data. As the size of the C++ language character type is notwchar_t

defined in the specification, the character type and associated stringwchar_t std::wstring

type are not used in Balau.

The character type is not used in Balau components. A set of universal to-stringchar16_t

and from-string function overloads is however included for UTF-16 string generation and

conversion. These functions provide to-string and from-string conversions when another

library works with UTF-16 strings or when application code requires UTF-16 encoded strings.

Balau uses the ICU library for unicode support. Unlike ICU, Balau uses the standard

 primitive type for representing UTF-32 characters. This is implicitly cast to and fromchar32_t

ICU's (which is a) within the functions.UChar32 signed int Character

The primary character and string related functionality that Balau provides is:

UTF-8 and UTF-32 character utilities;

universal to-string functions for UTF-8, UTF-16, and UTF-32 string conversion;

universal from-string functions for UTF-8, UTF-16, and UTF-32 string conversion;

various UTF-8 and UTF-32 string utilities;

byte based resource classes for reading and writing UTF-8 data;

UTF-8 to UTF-32 converting resource classes for reading UTF-32 data;

UTF-32 to UTF-8 converting resource classes for writing UTF-32 data.

The character utilities, universal to-string and universal from-string functions are discussed

in this section. The section discusses the string utilities. The sectionstring utilities resources

discusses the various resource classes.

110 Balau core C++ library

String types

The Balau C++ library uses the following character and string types:

Char type String type Usage

char std::string UTF-8 string or undefined array of bytes

char16_t std::u16string UTF-16 string

char32_t std::u32string UTF-32 string

Character utilities

#include <Balau/Type/Character.hpp>

Character utility functions for the following themes are provided:

classification (UTF-32);

iteration (UTF-8);

mutation (UTF-8 / UTF-32).

Many of the character utility functions are proxies to corresponding ICU functions.

Classification

The classification functions each accept a character. Most of the classificationchar32_t

functions act as predicates.

The following predicate classification functions are available.

Balau core C++ library 111

Function name Description

isLower
Does the specified code point have the general category Ll

(lowercase letter).

isUpper
Does the specified code point have the general category Lu

(uppercase letter).

isDigit
Does the specified code point have the general category Nd

(decimal digit numbers).

isHexDigit

Does the specified code point have the general category Nd

(decimal digit numbers) or is one of the ASCII latin letters a-f or

A-F.

isOctalDigit Is the specified code point one of the ASCII characters 0-7.

isBinaryDigit Is the specified code point one of the ASCII characters 0-1.

isAlpha
Does the specified code point have the general category L

(letters).

isAlphaOrDecimal
Does the specified code point have the general category L

(letters) or (decimal digit numbers).Nd

isControlCharacter Is the specified code point a control character.

isSpace
Is the specified code point a space character (excluding CR /

LF).

isWhitespace Is the specified code point a whitespace character.

isBlank
Is the specified code point a character that visibly separates

words on a line.

isPrintable Is the specified code point a printable character.

isPunctuation
Does the specified code point have the general category P

(punctuation).

isIdStart
Does the specified code point have the general category L

(letters) or (letter numbers).Nl

isIdPart Is the specified code point valid as part of an Id.

isBreakableCharacter
Is the specified code point a breakable character for line

endings.

isInclusiveBreakableCharacter
Is the specified code point a breakable character for line

endings that should be printed.

The following non-predicate classification functions are available.

Function name Description

utf8ByteCount
Returns the number of bytes that the character occupies when

UTF-8 encoded.

112 Balau core C++ library

Iteration

Iteration functions are defined for UTF-8 string views. These functions advance or retreat an

integer offset to the next or previous UTF-8 character. Two of the functions also return the

resulting character.

The following iteration functions are currently available.

Function name Description

getNextUtf8 Get the next code point from the UTF-8 string view.

getPreviousUtf8 Get the previous code point from the UTF-8 string view.

advanceUtf8
Advance the supplied offset from one code point boundary to

the next one.

retreatUtf8
Retreat the supplied offset from one code point boundary to the

previous one.

Mutation

Mutation functions are available for characters and for UTF-8 characters atchar32_t char

offsets inside strings.std::string

The following mutating functions are currently available.

Function name Description

toUpper(char32_t) Convert the supplied code point to uppercase.

toLower(char32_t) Convert the supplied code point to lowercase.

setUtf8AndAdvanceOffset(

std::string & destination,

int & offset,

char32_t c)

Write a code point into the supplied UTF-8 string.

Universal to-string

#include <Balau/Type/ToString.hpp>

This section outlines a development approach and supporting code in the Balau library for a

universal to-string function for each of the supported unicode encoding string types. These

functions are used throughout the Balau library and will propagate to application code

through the Balau header files. The implementation allows application developers to define

additional to-string function overloads for their own types and any other types for which they

require custom to-string function implementations.

Balau core C++ library 113

Overview

The C++ standard library provides a function for several primitive types, definedto_string

within the namespace. Whilst the C++ specification forbids the overloading of functionsstd

in the namespace, the function can be overloaded in the namespaces of userstd to_string

defined classes and the compiler will resolve them by examining the parameter type of the

function call.

The Boost library also provides a function which relies onboost:lexical_cast<std::string>

user defined functions to perform the to-string conversion.operator <<

The output of each of the above to-string implementations may differ.

In addition,

calling the function in a template class/function requires the systematic useto_string

of in order to resolve the built-in overloads for the set ofusing std::to_string to_string

primitive types defined in the standard library header,<string>

the definition of additional function overloads for primitive types not includedto_string

in the set of overloads in the header requires placing them outsideto_string <string>

of any namespace.

Unlike standard to-string functions or methods in other programming languages such as the

 method in Java, C++ does not have a unified standard for a to-string function, nortoString

can it have a standard to-string method as there is no common base class to declare one in.

Due to this and the complications described above, the Balau library standardises on the

use of a single to-string function for each of the Unicode character encodings.

One possible solution to this requirement was to promote the primitive type to_string

functions to the global namespace. This solution was decided against, in order to avoid

using a token defined in the namespace. In addition, three to-string functions (one perstd

Unicode encoding) are required. Consequently, the , , and toString toString16 toString32

tokens were chosen instead.

Users of the Balau library may define , , and function overloadstoString toString16 toString32

for their own custom types. Wrappers for the primitive type functions defined instd::to_string

the standard library header are also provided in the header file.<string> <ToString.hpp>

Additional overloads for common primitive types and standard containers are also supplied

in .<ToString.hpp>

114 Balau core C++ library

Signatures

The signatures of the universal UTF-8, UTF-16, and UTF-32 to-string functions are:

std::string toString(const T & value);
 std::u16string toString16(const T & value);
 std::u32string toString32(const T & value);

where is the parameter type.T

Usage

To use any of the Balau universal to-string functions, include the header file<ToString.hpp>

in your code. As this header is already included in the header which<BalauException.hpp>

is subsequently included in the header, use of the logger or features that<Logger.hpp>

throw Balau exceptions will automatically include the header file.<ToString.hpp>

In order to provide universal to-string function overloads to Balau classes and functions for

your custom types, it is sufficient to define a , , or functiontoString toString16 toString32

overload in the same namespace as your custom type. C++ argument-dependent lookup will

resolve the function overload via the parameter type in the call.

Note that , , or function overloads should not be defined fortoString toString16 toString32

type aliases, as this prevents the compiler from resolving the correct overload for a particular

type. Instead, use the original type within its namespace.

When calling the , , and functions from a namespace thattoString toString16 toString32

contains to-string function definitions in the namespace or a intermediate parent namespace,

it may be necessary to import the the functions in the global namespace via a using

directive, in order to ensure the correct overload is picked up from the local context.

Balau core C++ library 115

// Example of using the toString function with a using directive.

 struct G {};

 std::string toString(G) {
 return "G";
}

 namespace N {

 class L {};

 std::string toString(L) {
 return "L";
}

 void foo() {
 using ::toString;

 std::cout << toString(L())
 << toString(G())
 << toString(2)
 << toString("hello")
 << "\n";
}

 } // namespace N

Container to-string

The header contains a template function . This helper functionToString.hpp toStringHelper

provides a convenient parameter pack template template parameter to-string implementation

that can be selectively used for container types.

The declaration of the UTF-8 version of the helper function is as follows.

///
/// Helper for container to UTF-8 string functions.
///
/// This helper function can be used for custom container types if required.
///
template <typename ... T, template <typename ...> class C>

 inline std::string toStringHelper(const C<T ...> & c);

In order to use these container to-string helper functions, it is sufficient to define a new to-

string function that calls the helper function. This can be done manually or via the

 macros, where is the number of templateBALAU_CONTAINER _TO_STRINGx y x

// Example of using the toString function with a using directive.

// Local scope.
// ADL.
// Requires using directive.
// Requires using directive.

// namespace N

///
/// Helper for container to UTF-8 string functions.
///
/// This helper function can be used for custom container types if required.
///

116 Balau core C++ library

parameters that the container accepts (1-5), and is the unicode encoding (none for UTF-8,y

"16" for UTF-16, and "32" for UTF-32). These macros are also provided in the ToString.hpp

header.

In order to use these macros, the container must implement and begin() const end() const

iterator methods.

The header contains a set of such functions for each of the standard libraryToString.hpp

containers.

Parameter pack to-string

These versions of the to-string functions allow two or more input arguments to be converted

to strings and concatenated together in a single function call. They are templated parameter

pack versions of the universal to-string functions. They each contain a fold expression in

order to concatenate string versions of the input arguments.

As with the other predefined universal to-string functions, there are UTF-8, UTF-16, and

UTF-32 versions of the parameter pack to-string function.

The complete UTF-8 version of the parameter pack universal to-string function is as follows.

///
/// Calls toString on each input argument and concatenates them together to
/// form a single UTF-8 string.
///
template <typename P1, typename P2, typename ... P>

 inline std::string toString(const P1 & p1, const P2 & p2, const P & ... p) {
 return toString(p1) + toString(p2) + (std::string() + ... + toString(p));
}

To-string template class

The header also contains an additional template class based version of theToString.hpp

universal to-string functions. This version consists of a class template declaration plus three

specialisations, one for each character type. These classes are useful when the universal to-

string function needs to be called from within a class or function template and when the

string type is provided by a template argument.

The three specialisations are proxies to the previous sets of , , and toString toString16

 function overloads.toString32

The complete UTF-8 version of the templated universal to-string class is as follows.

///
/// Calls toString on each input argument and concatenates them together to
/// form a single UTF-8 string.
///

Balau core C++ library 117

///
/// Convert the supplied object to a std::string by calling toString.
///
template <> struct ToString<char> {
 template <typename T> std::string operator () (const T & object) const {
 return toString(object);
 }
};

Custom allocation

In addition to the based functions, the std::basic_string<CharT> to-string ToString.hpp

header file includes a parallel set of templated functions that accept a customto-string

allocator. The goal of these alternative functions is to provide suitable functionto-string

implementations for components that use a std::basic_string<CharT, std::

 string type.char_traits<CharT>, AllocatorT>

The notable usage of these templated functions is in the logging system. Whento-string

optionally enabled, the logging system uses a custom allocator that allocates on statically

allocated thread local buffers. In this configuration, the logging system uses the to-string

functions that accept an allocator template argument.

Universal from-string

#include <Balau/Type/FromString.hpp>

This section outlines a development approach and supporting code in the Balau library for a

universal from-string function for each of the supported unicode encoding string types. The

universal functions provide a standard way to define string to object typefrom-string

conversions that can be used within library components. Similarly to the universal to-string

functions, these functions are used throughout the Balau library, will propagate to application

code, and application developers can define additional to-string function overloads for their

own types.

Signatures

The signatures of the universal UTF-8, UTF-16, and UTF-32 from-string functions are:

void fromString(T & destination, std::string_view value);
 void fromString16(T & destination, std::u16string_view value);
 void fromString32(T & destination, std::u32string_view value);

where is the parameter type.T

///
/// Convert the supplied object to a std::string by calling toString.
///

118 Balau core C++ library

The type must be copy assignable, move assignable, have public mutable fields, or mustT

provide suitable setter methods in order to be used in a function overload. If thisfrom-string

is not the case, the type is unsuitable to have a universal from-string function overload and a

custom named from-string function (with a different signature) should be created instead.

Usage

To use any of the Balau universal from-string functions, include the <FromString.hpp>

header file in your code.

In order to provide universal from-string function overloads to Balau classes and functions

for your custom types, it is sufficient to define a , , or fromString fromString16 fromString32

function overload in the same namespace as your custom type. C++ argument-dependent

lookup will resolve the function overload via the parameter type in the call.

When calling the , , and functions from a namespacefromString fromString16 fromString32

that contains from-string function definitions in the namespace or a intermediate parent

namespace, it may be necessary to import the the functions in the global namespace via a

using directive, in order to ensure the correct overload is picked up from the local context.

From-string template class

The header also contains an additional template class based version of theFromString.hpp

universal from-string functions. This version consists of a class template declaration plus

three specialisations, one for each character type. These classes are useful when the

universal from-string function needs to be called from within a class or function template and

when the string type is provided by a template argument.

The three specialisations are proxies to the previous sets of , , and fromString fromString16

 function overloads.fromString32

The complete UTF-8 version of the templated universal from-string class is as follows.

Balau core C++ library 119

///
/// UTF-8 specialisation of FromString<T>.
///
/// Converts the supplied std::string to an object of type T by calling fromString.
///
template <> struct FromString<char> {

 template <typename T>
 void operator () (T & destination, const std::string & value) const {
 fromString(destination, value);
 }
};

///
/// UTF-8 specialisation of FromString<T>.
///
/// Converts the supplied std::string to an object of type T by calling fromString.
///

///
/// @param destination the destination value that is set via assignment
/// @param value the string input
/// @throw ConversionException when the conversion fails
///

120 Balau core C++ library

Balau core C++ library 121

Command line parser
Overview

A compact command line parser. The options of a constructed parser are specified via a

fluent API. Options with and without values are supported. Options can be specified with

abbreviated and full names. A final value option is also supported.

The command line parser supports two styles of command line switches. The first style is

 (SSV). In this style, the switches supplied on the command line startswitch - space - value

with a "-" for abbreviated switches and "--" for full switches. For arguments with values, the

value is separated from the switch with whitespace.

The second supported style is (SEV). In this style, the switchesswitch - equals - value

supplied on the command line do not have a prefix. For arguments with values, the value is

separated from the switch with an equals character "=".

The command line parser can be configured to use one or the other style. Alternative, it can

be default constructed whereapon it will detect the style from the first switch's leading

character.

Quick start

#include <Balau/Application/CommandLine.hpp>

Style

Here are some examples of command lines.

122 Balau core C++ library

#
Command line that uses the SSV style and that has a final value.
#
-k = switch without value
--max = switch with value
foo = final value
#
./myApp1 -k --max 4 foo

#
Command line that uses the SEV style and that has a final value.
#
./myApp2 k max=4 foo

#
Command line that uses the SSV style and that does not have a final value.
#
./myApp3 -k --max 4

#
Command line that uses the SEV style and that does not have a final value.
#
./myApp3 k max=4

Configuration

Here is an example of a configured parser. The switches specified in calls do notwithOption

take "-" or "--" prefixes, regardless of whether the parser is to be configured as SSV, SEV, or

detected.

The command line parser is a template class. The single typename is the key type.

Typically, this is an enum, the elements of which are the keys.

// Pre-defined option keys used in code.
enum Key {
 KEY1, KEY2, KEY3, HELP
};

 auto commandLine = CommandLine<Key>()
 .withOption(KEY1, "k", "key-one", true, "The first key.")
 .withOption(KEY2, "m", "key-two", true, "The second key.")
 .withOption(KEY3, "3", false, "Specify in order to use third style.")
 .withHelpOption(HELP, "h", "help", "Displays this help message")
 .withFinalValue();

This builds a parser with two options that have values, one option that does not have a

value, plus a (key-less) final value option.

// Pre-defined option keys used in code.

Balau core C++ library 123

If the application's command line does not have a final (switch-less) value, the .

 call should be omitted.withFinalValue()

Each option has a key (, , in the example above). These keys are used toKEY1 KEY2 KEY3

query the parsed data later on.

The previous example will detect the style from the first command line argument parsed.

More often, one or the other style is chosen for an application. In order to create the same

parser as in the previous example that is configured as SSV, the CommandLineStyle::

 argument should be passed into the constructor.SwitchSpaceValue

auto commandLine = CommandLine<Key>(CommandLineStyle::SwitchSpaceValue)
 .withOption(KEY1, "k", "key-one", true, "The first key.")
 .withOption(KEY2, "m", "key-two", true, "The second key.")
 .withOption(KEY3, "3", false, "Specify in order to use third style.")
 .withFinalValue();

Similarly, if the parser should be configured to parse the SEV style only, the

 argument should be passed into the constructor.CommandLineStyle::SwitchEqualsValue

auto commandLine = CommandLine<Key>(CommandLineStyle::SwitchEqualsValue)
 .withOption(KEY1, "k", "key-one", true, "The first key.")
 .withOption(KEY2, "m", "key-two", true, "The second key.")
 .withOption(KEY3, "3", false, "Specify in order to use third style.")
 .withFinalValue();

Retrieving data

To parse a command line, call the method.parse

commandLine.parse(argc, argv, true);

The first two arguments in the parse call are the standard argc/argv argument of the main

function.

The third argument in the parse call indicates whether the first argument should be ignored (i.

e. the first argument is the executable path).

To obtain options from the parser, call the option verification and extraction methods. In

addition to string extraction, methods are available for extracting option data in a variety of

primitive types. Refer to the command line parser for details.API documentation

Some example code that extracts the options from the previous command line parser is

shown below.

124 Balau core C++ library

auto o1 = commandLine.getOption(KEY1);
 auto o2 = commandLine.getOption(KEY2);
 auto o3 = commandLine.getOption(KEY3);
 auto fv = commandLine.getFinalValue();

Help text

The command line parser has a method called that generates a multi-line helpgetHelpText

text string for use in command line help text.

Balau core C++ library 125

Resources
Overview

The resource classes provide a unified approach to specifying, sourcing and obtaining

resource streams via URIs.

There are two groups of classes defined in the namespace:Balau::Resource

URIs;

resources.

URIs specify resources and provide functionality specific to each URI type. Resources are a

convenient way of obtaining read and (for certain resource types) write streams on the

resources specified by the URIs.

Quick start

#include <Balau/Resource/*.hpp>

URIs

URI classes each specify a different type of URI. All URI classes are derived from the

common base class. The currently available URI classes are:Uri

File;

Http;

Https;

ZipFile;

ZipEntry.

The and URI classes derive from the abstract class.Http Https Url

URI classes may be used as stack based objects or on the heap in standard pointer

containers.

// Stack based URI objects.
File file { "text.txt" };

 Http wiki { "http://wikipedia.org" };

 auto src1 = std::unique_ptr<URI>(new File("text.txt"));
 auto src2 = std::unique_ptr<URI>(new Https("https://en.wikipedia.org/wiki/B"));

// Stack based URI objects.

// Heap based URI objects.

126 Balau core C++ library

Heap based URI objects allow different types of URI to provide abstract functionality, such

as providing resources.

Resources

Each URI class is accompanied by two or four resource classes. The abstract resource

classes are:

ByteReadResource;

ByteWriteResource;

Utf8To32ReadResource;

Utf32To8WriteResource.

The first pair of abstract resource classes provide byte based resource reading and writing.

The second pair of abstract resource classes provide UTF-8 to UTF-32 resource reading

and UTF-32 to UTF-8 resource writing. These resource types allow reading from UTF-8

streams and consuming in UTF-32, and producing in UTF-32 and writing as UTF-8.

Resource objects must be obtained from URIs, either in heap based, abstract form

contained within containers, or in stack based, concrete form directly fromstd::unique_ptr

concrete URI types.

// An abstract URI.
std::unique_ptr<URI> uri = getUri();

 std::unique_ptr<ByteReadResource> readResource = uri->byteReadResource();

Once a read / write resource has been obtained from a URI, the input / output stream (UTF-

8 or UTF-32) may be obtained by calling or .readStream writeStream

// Get an input stream from the resource.
std::istream & stream = readResource->readStream();

URI classes

There are two ways to use the URI classes. The first way is to use instances of the URI

classes directly as stack based objects. Balau components make extensive use of URI

classes in this way, predominantly the class. Each URI class provides an API that isFile

// An abstract URI.

// Get an abstract byte read resource from the URI.

// Get an input stream from the resource.

Balau core C++ library 127

specialised for URIs of the type provided by the class. For example, the class providesFile

the usual file manipulation functions such as checking for file existence and type, delete the

file, etc.

The second way to use the URI classes is on the heap inside a pointer container. Some

Balau components accept a argument, allowing any type of URI to bestd::unique_ptr<Uri>

supplied.

The most useful use cases for supplying arguments to a component is:std::unique_ptr<Uri>

to obtain abstract read and/or write resources;

to obtain an abstract recursive iterator.

The methods in the base class that obtain read and write resources are as follows.Uri

///
/// Get a byte read resource for the URI.
///
/// This will throw a NotImplementedException if the URI does not support reading.

 public: virtual std::unique_ptr<ByteReadResource> byteReadResource() = 0;

 public: virtual std::unique_ptr<Utf8To32ReadResource> utf8To32ReadResource() = 0;

 public: virtual std::unique_ptr<ByteWriteResource> byteWriteResource() = 0;

 public: virtual std::unique_ptr<Utf32To8WriteResource> utf32To8WriteResource() = 0;

In order to determine whether a URI supports reading and writing, the and canReadFrom

 methods can be called.canWriteTo

///
/// Get a byte read resource for the URI.
///
/// This will throw a NotImplementedException if the URI does not support reading.

///

///
/// Get a UTF-8 to UTF-32 read resource for the URI.
///
/// This will throw a NotImplementedException if the URI does not support reading.
///

///
/// Get a byte write resource for the URI.
///
/// This will throw a NotImplementedException if the URI does not support writing.
///

///
/// Get a UTF-32 to UTF-8 write resource for the URI.
///
/// This will throw a NotImplementedException if the URI does not support writing.
///

128 Balau core C++ library

///
/// Can data be read from the URI via a read resource.
///
public: virtual bool canReadFrom() const = 0;

 public: virtual bool canWriteTo() const = 0;

The method in the base class that obtains a recursive iterator is as follows.Uri

///
/// Get a recursive iterator.
///
/// This will throw a NotImplementedException if the URI does not have a recursive iterator.
///
public: virtual std::unique_ptr<RecursiveUriIterator> recursiveIterator() = 0;

In order to determine whether a URI supports recursive iteration, the isRecursivelyIterable

method can be called.

///
/// Does the URI have a recursive iterator (e.g. file and zip archive URIs).
///
public: virtual bool isRecursivelyIterable() const = 0;

Resource classes

As discussed in the previous section, the abstract resource classes are:

ByteReadResource;

ByteWriteResource;

Utf8To32ReadResource;

Utf32To8WriteResource.

Byte based and derived resources provide input andByteReadResource ByteWriteResource

output streams that read/write as bytes. These can be used for any byte oriented purpose,

including UTF-8 strings.

Unicode based and derived resourcesUtf8To32ReadResource Utf32To8WriteResource

provide input and output streams that provide an internal format of , despite readingchar32_t

or writing the external resource data as a UTF-8 byte stream. These can be used when a

stream of Unicode characters needs to be read or written.

///
/// Can data be read from the URI via a read resource.
///

///
/// Can data be written to the URI via a write resource.
///

///
/// Get a recursive iterator.
///
/// This will throw a NotImplementedException if the URI does not have a recursive iterator.
///

///
/// Does the URI have a recursive iterator (e.g. file and zip archive URIs).
///

Balau core C++ library 129

Each concrete URI type provides at least one set of read or write resource classes. Some

URI classes provide both sets of resource classes.

Recursive iterators

In addition to the resource readers and writers, some of the URI classes provide recursive

iterators. These iterators supply a stream of new URIs, either of the same URI type (in the

case of the URI), or a different type (). Resource readers/writers may be obtainedFile ZipFile

from each of the URIs obtained during iteration.

The two types of recursive iterator currently defined in the library allow iteration over:

the set of files and directories within a file system directory ();File

the set of files and directories within a zip archive ().ZipFile

As the recursive iterators may be obtained from a pointer of type , components may beUri

written that consume input and/or output streams for sets of resources on the local file

system or from within zip archives.

Custom resources

As the and resource readers/writers are abstract classes, custom URIs and associatedUri

resources may be created easily and used within components that consume abstract

resources. In order to do this, the class should be implemented, along with associatedUri

implementations of / if the resource may beByteReadResource Utf8To32ReadResource

read, and / if the resource may be written.ByteWriteResource Utf32To8WriteResource

130 Balau core C++ library

Balau core C++ library 131

CONTAINERS

132 Balau core C++ library

ArrayBlockingQueue
Overview

A simple blocking queue that uses a vector as the backing store.

ArrayBlockingQueue implements the API and provides a blocking queueBlockingQueue

implemented via a wait-notify pattern.

Quick start

#include <Balau/Container/ArrayBlockingQueue.hpp>

To construct an array blocking queue, specify the capacity of the queue via the constructor.

// Create an array blocking queue with a capacity of 100.
ArrayBlockingQueue<T> queue(100);

The queue is used in the same way as any other implementation. See the BlockingQueue

API documentation for information on the blocking queue interface.BlockingQueue

Concurrency

This queue implementation is thread safe but is not lock free.

// Create an array blocking queue with a capacity of 100.

Balau core C++ library 133

DependencyGraph
Overview

A mutable graph structure that models dependency relationships in a dependency graph.

DependencyGraph uses the Boost graph library, and is inspired by the Boost graph library

dependency example.

Quick start

#include <Balau/Container/DependencyGraph.hpp>

Construction

The construction of a dependency graph is made by the default constructor.

// Create a dependency graph (T is the value type stored in each graph node).
DependencyGraph<T> graph;

Population

Population of the graph is performed with two main actions:

adding dependency instances;

creating dependency relationships.

These two actions correspond to the addition of graph nodes and graph edges.

To add a node, call the method.addDependency

// Add a dependency instance to the graph.

 T value;

graph.addDependency(value);

To add a dependency relationship, call the method.addRelationship

// Create a dependency graph (T is the value type stored in each graph node).

// Add a dependency instance to the graph.

// The instance (normally sourced elsewhere).

134 Balau core C++ library

// Add a relationship between two dependencies.

 T independent;
 T dependent;

 graph.addRelationship(independent, dependent);

The dependency graph is designed to use small values that are used as keys. The types

used in the dependency graph must therefore have a valid equals method for use in a map

based structure. If a large amount of data needs to be stored in each value, one suitable

approach would be to add a field to the value and exclude it from thestd::shared_ptr

comparison method logic.

Querying

In addition to standard iterators, the dependency graph has a set of query methods.

Function name Description

hasDependency Does the graph have the specified dependency?

directDependenciesOf What are the direct dependencies of the specified dependency.

dependencyOrder Calculate the dependency order of the dependencies.

parallelDependencyOrder Calculate the parallel dependency order of the dependencies.

hasCycles Does the dependency graph have any cycles?

In addition to the query methods, the method logs the contents of the dependencylogGraph

graph to the logging system.

See the API documentation for information on the API for these methods.DependencyGraph

Concurrency

The dependency graph is not thread safe.

// Add a relationship between two dependencies.

// The instances (normally sourced elsewhere).

Balau core C++ library 135

ObjectTrie
Overview

An object based trie used for parent-child hierarchies.

This data structure is useful when the parent-child relationships between nodes are

semantically important and must not be changed via tree balancing. If this is not the case, a

B-tree or red–black tree would most likely be more appropriate.

Each node in the trie contains an object of type T plus a vector of child nodes. A node's

children are ordered in the order of appending.

In addition to depth first and breadth first iteration, the object trie contains search and

cascade algorithms. The object type T is thus effectively a combination of primary key and

value. The type T normally provides a key type field that is compared within the operator ==

function/method, and one or more value fields that are not part of the equality evaluation.

When using the search algorithms of the object trie, the standard operator == function /

method is used for the object type T. Alternative methods are also provided that accept a

custom compare function/lambda, allowing value types that do not have a suitable operator

 function/method to be used in the object trie search and cascade algorithms.==

This trie implementation is not optimised or compressed. Use cases requiring an optimised

trie representation would most likely be better using a non-object based trie implementation.

Quick start

#include <Balau/Container/ObjectTrie.hpp>

Construction

An object trie can be constructed either by constructing a trie with a root node containing a

default constructed value, or by copying/moving a value into the trie to form the root node.

// Construct an object trie with a default root value.
// The int type is used as the value type.
ObjectTrie<int> trie1;

 ObjectTrie<int> trie2(123);

When a class type is used as the object trie type, a suitable function/methodoperator ==

should be defined if the object trie's algorithms are to be used.

// Construct an object trie with a default root value.
// The int type is used as the value type.

// Construct an object trie with a specified root value.

136 Balau core C++ library

// A class used in the object trie.
// The primary key of the class is the integer.
struct A {
 int k;
 double v;

 A(int k_) : k(k_) {}

 A(int k_, double v_) : v(v_) {}
};

 inline bool operator == (const A & lhs, const A & rhs) {
 return lhs.k == rhs.k;
}

 ObjectTrie<A> trie({ 0, 123.45 });

The nodes of the trie are represented by objects. These contain the value T,ObjectTrieNode

and a vector of child nodes.

Trie nodes

The root node of the trie may be obtained via the method.root

ObjectTrieNode<A> & rootNode = trie.root();

To obtain child nodes, the trie has and methods that provide the number ofcount get

children of the root and references to the child nodes. Similarly, the hasObjectTrieNode

equivalent and methods that provide the number of children of the node andcount get

references to the children of the node.

// Get the second child of the root node.
ObjectTrieNode<A> & c = trie.get(1);

 ObjectTrieNode<A> & c = c.get(0);

New child nodes of the root node or child nodes may be added via the and add

 methods. The method adds the new child node and returns theaddAndReturnChild add

current node. The method adds the new child node and returns the newaddAndReturnChild

child.

// A class used in the object trie.
// The primary key of the class is the integer.

// Implicit construction for key only objects.

// Explicit construction for full objects.

// Get the second child of the root node.

// Get the first child of the second child.

Balau core C++ library 137

// Add a new node to the root of the trie.
trie.add(2);

c.get(0).add(7);

Searching

The and methods perform hierarchical exact and nearest searching.find findNearest

Find

To use the methods, call one of the methods with a vector of values to compare. Thefind

find method will descend into the trie, comparing each supplied value in turn with the current

set of children. If a match is not found in one of levels, is returned.nullptr

There are two method overloads. The first overload uses the default functionfind operator ==

/method for the type and the second overload allows a custom comparator to be specified.T

// Perform an exact search with the default comparator.
auto * n = trie.find({ 1 });

By default, the root node is not included in the search, thus the first object in the supplied

vector is compared with the child nodes of the root node.

If the root node should be included in the search, should be passed as the secondtrue

argument in the method call.

// Perform an exact search with the default comparator.
// Include the root node in the search.
auto * n = trie.find({ 0, 1 }, true);

In order to use a custom comparator, a lambda function can be specified in the call.

// Perform an exact search with a custom comparator.
auto * n = trie.find(
 { 0, 1 }
 , [] (auto & lhs, auto & rhs) { return lhs.k == rhs.k; }
);

FindNearest

The methods work in the same way as the methods, with the exception thatfindNearest find

if a match is not found in one of levels, the current match is returned. If no matches are

found at all, then is returned.nullptr

// Add a new node to the root of the trie.

// Add a new node to the first child of the root node.

// Perform an exact search with the default comparator.

// Perform an exact search with the default comparator.
// Include the root node in the search.

// Perform an exact search with a custom comparator.

138 Balau core C++ library

// Perform a nearest search with the default comparator.
auto * n = trie.findNearest({ 1, 2, 3 });

FindNearestLeaf

The methods work in the same way as the methods, with thefindNearestLeaf findNearest

exception that a match must terminate with a leaf node. If a nearest match is found that is

not a leaf node, then is returned.nullptr

// Perform a nearest leaf search with the default comparator.
auto * n = trie.findNearestLeaf({ 1, 2, 3 });

Iteration

Standard library compatible iterators are provided in the object trie implementation. There

are two types of iterator available:

depth first;

breadth first.

The and iterators are typedefs to the and iterator const_iterator DepthIterator

 object trie iterators.ConstDepthIterator

Depth first

Depth first iteration is performed in the same way as iteration in any standard library

container.

ObjectTrie<int> trie(0);
populateUIntTrie(trie);

 while (ObjectTrie<int>::iterator i = trie.begin(); i != trie.end(); ++i) {
 auto & object = i->value;

}

 for (auto & node : trie) {
 auto & object = node.value;

}

// Perform a nearest search with the default comparator.

// Perform a nearest leaf search with the default comparator.

// Traditional iteration.

// ... use the object ...

// Range-based iteration.

// ... use the object ...

Balau core C++ library 139

If the depth first iteration should be explicitly mentioned in code, the and depthBegin

 calls can be specified instead of and .depthEnd begin end

while (auto i = trie.depthBegin(); i != trie.depthEnd(); ++i) {
 auto & object = i->value;

}

Breadth first

As the range-based loop defaults to depth first iteration, breadth first iteration must be

performed via traditional iteration.

// Perform a breadth first iteration on the same trie.
while (auto i = trie.breadthBegin(); i != trie.breadthEnd(); ++i) {
 auto & object = i->value;

}

Cascading

Object trie cascading involves copying or moving one object trie onto another object trie with

the following rules.

Each node in the source trie that matches a node in the destination trie for equality

and position is (copy or move) assigned to the node in the source trie.

Each node in the source trie that does not match a node in the destination trie for

equality and position is (copy or move) added to the destination trie.

// Perform an object trie cascade.
ObjectTrie<int> trie1(0);
populateUIntTrie1(trie1);

 ObjectTrie<int> trie2(0);
populateUIntTrie2(trie2);

trie1.cascade(trie2);

The above code performs copy cascading. This results in the source trie maintaining validity

after the cascade operation. If move cascading is required instead, the cast maystd::move

be used to move the source trie into the cascade call.

// ... use the object ...

// Perform a breadth first iteration on the same trie.

// ... use the object ...

// Perform an object trie cascade.

140 Balau core C++ library

// Perform an object trie cascade via moving.
trie1.cascade(std::move(trie2));

The third and fourth methods overloads accept a copy or move function in additioncascade

to the source trie. This allows the source node's value to be modified during copying /

moving. Otherwise, the cascade semantics are identical to the first two method overloads.

Fluent build API

In order to provide a visual representation of an object trie in code, a variadic fluent build API

is provided in the object trie implementation. This build API can be most useful in test code,

where canned tries need to be constructed.

The test case provides a usage example of the fluent build API.ObjectTrieTest::fluentBuild

using Trie = ObjectTrie<Value>;
 using Node = ObjectTrieNode<Value>;

 Trie trie;

 trie.add({ 'a', 1 }
 , Node::child({ 'a', 11 })
 , Node::child({ 'b', 12 })
 , Node::child({ 'c', 13 })
 , Node::child({ 'd', 14 })

).add({ 'b', 2 }
 , Node::child({ 'a', 21 })
 , Node::child({ 'b', 22 }
 , Node::child({ 'a', 221 })
 , Node::child({ 'b', 222 })
 , Node::child({ 'c', 223 })
)

).add({ 'c', 3 }
 , Node::child({ 'a', 31 })
 , Node::child({ 'b', 32 })
 , Node::child({ 'c', 33 })
 , Node::child({ 'd', 34 })
 , Node::child({ 'e', 35 })
);

// Perform an object trie cascade via moving.

Balau core C++ library 141

SharedMemoryQueue
Overview

A blocking, shared memory queue that uses the Boost Interprocess library.

This class provides a shared memory backed blocking queue and implements the

 API. The class encapsulates calls to the , whichBlockingQueue Boost Interprocess library

create, use, and delete a shared memory queue, and has additional sequencing and

chunking management logic. The sequencing and chunking logic manages the enqueueing

and dequeueing of oversize objects, which require multiple shared memory queue send and

receive operations that may be out of order and/or interleaved with other enqueued buffers.

The implementation uses the for marshalling and unmarshalling ofBoost Serialization library

objects. In order to use the queue, the object type must provide Boost or /T serialize save

 methods.load

Quick start

#include <Balau/Interprocess/SharedMemoryQueue.hpp>

The queue is used in the same way as any other implementation.BlockingQueue

The queue can be instantiated in three ways:

as the creator of the shared memory objects in the queue;

as the creator or user of the shared memory objects in the queue;

as a user of the shared memory objects in the queue.

Create

The most simple constructor used to create a queue is as follows.

// Create a shared memory queue for objects of type T and
// with a capacity of 100.
SharedMemoryQueue<T> queue(100);

Such a queue is only useful if the application will share the queue by forking or if the

automatically generated name prefix is obtained by calling on the resulting queuegetName

instance.

In order to create a queue with a known name prefix, use the constructor that takes a string

argument in addition to the capacity.

// Create a shared memory queue for objects of type T and
// with a capacity of 100.

https://www.boost.org/doc/libs/1_68_0/doc/html/interprocess.html
https://www.boost.org/doc/libs/1_68_0/libs/serialization/doc/index.html

142 Balau core C++ library

// Get the queue's predefined name prefix from somewhere.
const std::string name = getQueueName();

 SharedMemoryQueue<T> queue(100, name);

SharedMemoryQueue has a number of other optional parameters. These are outlined below.

Parameter Type Default Description

capacity unsigned int No default The number of items that the queue can hold.

buffer size unsigned int

Marshal

size of T()

plus header

The size in bytes of each item in the queue. This

size includes the header size.

name std::string UUID The name of the queue.

throw on

oversize
bool false

Throw an exception if an attempt to enqueue an

oversize object is made.

If the queue is to be used with multiple dequeueing processes, the buffer size of the queue

must be large enough to fit all serialised objects plus the queue header size of 16 bytes. For

POD objects, which do not have any fields that allocate memory, the default buffer size

calculated by the queue from a default constructed object is sufficient. For object types that

do have fields that allocate memory, the default buffer size calculated by the queue is not

sufficient and thus the buffer size must be supplied manually. Otherwise, the queue will be

defective.

Note that manual specification of the buffer size is not required if dequeueing will occur in a

single process and with synchronised access. In this case, the result of not specifying a

sufficient buffer size will result in oversize serialisations being split into chunks which are

then sent over the shared memory queue in turn. Then, the single process calling /dequeue

 with synchronised access will join these chunks together before deserialising.tryDequeue

Open or create

An equivalent pair of constructors are available that open the shared memory objects of a

queue if they already exist, otherwise, they create the objects. In order to use these

constructors, the object must be passed as the first argument.OpenOrCreateSelector

Otherwise, these constructors are identical to their counterparts which only create the

shared memory objects.

// Get the queue's predefined name prefix from somewhere.

// Create a shared memory queue with the predefined name prefix.

Balau core C++ library 143

// Get the queue's predefined name prefix from somewhere.
const std::string name = getQueueName();

 SharedMemoryQueue<T> queue(OpenOrCreateSelector, 100, name);

Open

There is a single constructor for instantiating a as a user of anSharedMemoryQueue

existing queue. This constructor takes a containing the name of the queue to open.std::string

// Get the queue's predefined name prefix from somewhere.
const std::string name = getQueueName();

 SharedMemoryQueue<T> queue(name);

Usage

Once the queue has been created or opened, it can be used in the same way as any other

 implementation. See the API documentation for informationBlockingQueue BlockingQueue

on the blocking queue interface.

Concurrency

This queue implementation has the following concurrency guarantees.

The queue can be used for concurrent enqueues and concurrent dequeues across

processes/threads if the maximum enqueued serialised object size + queue header size is

guaranteed to be smaller than the shared memory queue buffer size.

If the above guarantee cannot be met (due, for example, a non-deterministic serialised

object size), the queue can be used for concurrent enqueues across processes/threads, but

only synchronised dequeues in a single process. This is due to the dequeueing of partial

objects occurring in one process, rendering the continuation of the dequeueing of that object

impossible in other processes.

If this limitation is breached, the set of applications using the shared memory queue will be

defective.

The dequeueing calls in such a scenario must also be protected by a mutex if multiple

threads of the dequeueing application are concurrently dequeueing. No such mutex

protection is required if oversize objects are not being enqueued.

// Get the queue's predefined name prefix from somewhere.

// Open or create a shared memory queue with the predefined name prefix.

// Get the queue's predefined name prefix from somewhere.

// Open a shared memory queue with the predefined name prefix.

144 Balau core C++ library

In order to catch oversize message errors in a system that is not designed for oversize

message dequeueing, all constructors of the accept an additionalSharedMemoryQueue

boolean argument. Setting this argument to true will cause an exception to be thrown if an

attempt is made to enqueue an oversize message. This check can be switched on in order

to catch early such errors during the development and testing phases.

Use cases

There are two ways to utilise a shared memory queue in multiple processes:

by forking a parent process;

by communicating the queue name to other processes.

Forked processes

Forking is a simple way to construct and use the share memory queue across processes,

but it is only supported by Unix-like operating systems. In order to construct and use a

shared memory queue in a parent process and a set of forked child processes, construct the

queue in the parent and fork as normal. The Balau class provides a convenient API forFork

forking. The shared memory queue will be ready for use in the child processes without any

further action. The first constructor is used for this.

// The type of object being sent across the queue.
struct A {
 int i;
 double d;

 A() : i(0), d(0.0) {}
 A(int i_, double d_) : i(i_), d(d_) {}

 template <typename Archive> void serialize(Archive & archive, unsigned int) {
 archive & BoostSerialization(d) & BoostSerialization(i);
 }
};

 SharedMemoryQueue<A> queue(100);

 Fork::performFork([&queue] () { return runChildLogic(queue); }, true)

Independent processes

Processes that are not related by forking may access the same shared memory queue by

communicating the name to each process.

// The type of object being sent across the queue.

// The serialize method, used by the queue to marshal and unmarshal the object.

// Construct the shared memory queue before forking.

// Perform the fork. The child will not return.

Balau core C++ library 145

There are two possibilities for communicating the name:

pre-share the name between the processes;

create the queue in one process and communicate its name to the other processes in

some way.

With the first solution, a name is decided upon in advance or is algorithmically generated by

the application. One solution to this when sharing a queue between multiple instances of the

same application is to construct a name prefix via the application's executable path. A helper

function namePrefixFromAppPath() is available for this in the class.SharedMemoryUtils

Using this solution, a set of shared memory queue names can be created by appending

predefined strings to the name generated from the helper function.

Another solution is to pre-share a name that can be guaranteed not to be used by other

processes, either hard wired in the application (not recommended) or via the application's

configuration/options.

In order to use a peer-to-peer approach, the constructors can be used.create-or-open

// Create the name for the shared memory queue.
const std::string name = SharedMemoryUtils::namePrefixFromAppPath() + "_myQueue";

 SharedMemoryQueue<A> object(OpenOrCreate, 100, name);

In order to use a manager-worker approach, one of the constructors which creates the

shared memory objects can be used in the manager process and the queue open

constructor can be used in the worker processes. Due to the necessity of the queue existing

for the worker processes, the manager process will need to create the queue before the

workers attempt to open it.

// Create the name for the shared memory queue.

// Create or open the shared memory queue with the name prefix.

146 Balau core C++ library

// Manager process..

 const std::string name = SharedMemoryUtils::namePrefixFromAppPath() + "_myQueue";

 SharedMemoryQueue<A> queue(100, name);

 const std::string name = SharedMemoryUtils::namePrefixFromAppPath() + "_myQueue";

 SharedMemoryQueue<A> queue(name);

// Manager process..

// Create the name prefix for the shared memory queue.

// Create the shared memory queue.

///

// Worker process..

// Create the name prefix for the shared memory queue.

// Open the shared memory queue.

Balau core C++ library 147

SynchronizedQueue
Overview

A simple non-blocking queue that uses a std::list and a mutex to provide a thread safe

queue.

SynchronizedQueue implements the API and provides a simple (and inefficient)Queue

thread safe queue.

Quick start

#include <Balau/Container/SynchronizedQueue.hpp>

The construction of a synchronised queue is made by the default constructor.

// Create a synchronised queue.
SynchronizedQueue<T> queue;

The queue is used in the same way as any other implementation. See the Queue Queue

API documentation for information on the queue interface.

Concurrency

This queue implementation is thread safe but is not lock free.

// Create a synchronised queue.

148 Balau core C++ library

Balau core C++ library 149

CONCURRENT

150 Balau core C++ library

CyclicBarrier
Overview

A synchronising barrier that can be configured for an arbitrary number of threads.

The barrier automatically resets after releasing the threads.

The barrier can be reconfigured for a different number of threads. It is the responsibility of

the using code to ensure that the barrier is not being used when reconfigured.

Quick start

#include <Balau/Concurrent/CyclicBarrier.hpp>

Using the cyclic barrier is simple. The barrier is constructed or reconfigured with the number

of threads that will wait before the barrier will release the threads and reset.

// Create a cyclic barrier.
CyclicBarrier barrier(4);

barrier.reconfigure(2);

Then each participating thread calls the barrier.

/// Count down the barrier, blocking if the count has not reached 0.
barrier.countdown();

// Create a cyclic barrier.

// Reconfigure the cyclic barrier.

/// Count down the barrier, blocking if the count has not reached 0.

Balau core C++ library 151

Fork
Overview

A wrapper around the and functions.fork waitid

The wrapper has two fork related functions and a set of functions used to manage child

process termination.

The fork related functions are:

a function to determine whether forking is supported for the platform;

a function to perform the fork and run the supplied function in the child.

The child process termination management functions are:

a function to wait on a child process;

a set of functions to check for a terminated child process.

Quick start

#include <Balau/Concurrent/Fork.hpp>

Forking

The function can be used to verify that the platform has fork support.forkSupported

The function overloads take a function object (pointer, lambda) which will beperformFork

run in the child process after forking. There are two types of overload.

The first overload requires a function that returns an exit status. This exit status in the child

process will be returned from the function if the boolean is set to false. Otherwise,exitChild

the child process will exit at the end of the call to with the exit status given byperformFork

the supplied function. The parent process will return the PID of the child process from the

 function.performFork

152 Balau core C++ library

/// /// Create a set of worker processes. /// ///

 class WorkerState {

}

 using WorkerStateObject = MSharedMemoryObject<WorkerState>;
 using WorkerStatePtr = std::shared_ptr<WorkerStateObject>;

 class Worker {
 private: WorkerStatePtr state;

 public: Worker(WorkerStatePtr state_) : state(std::move(state_)) {}

 public: int run() {

 return 0;
 }
};

 WorkerStatePtr createWorkers() {

 auto workerState = std::make_shared<WorkerStateObject>();

 Worker worker(sharedShared);

 std::vector<int> childProcessPids;

 for (unsigned int m = 0; m < WorkerCount; m++) {
 childProcessPids.push_back(
 Fork::performFork([&worker] () { return worker.run(); }, true)
);
 }

 return workerState
}

The second overload in the class does not require a function/lambda that returns anyFork

particular type. This overload will return 0 on successful completion of the supplied function

in the child process and will return zero. The parent process will again return the PID of the

child process from the function. It is then the responsibility of the caller toperformFork

handle the continuing execution of the child process.

/// /// Create a set of worker processes. /// ///

// The worker state to be shared across processes.

// ... worker state fields ... //

// The worker implementation.

// ... worker loop ... //

// Create the shared state and workers.

// Create the shared state.

// Create the worker.

// Create the child processes and run the workers within.

// ... Parent process continues with access to shared state ... //

Balau core C++ library 153

Termination

There are three functions available for managing child process termination.

Function name Description

waitOnProcess Wait on a process until the process terminates.

checkForTermination
Check the process or processes for termination without

blocking.

terminateProcess Terminate the child process if it is running.

See the API documentation for more information.Fork

154 Balau core C++ library

Balau core C++ library 155

Semaphore
Overview

A traditional semaphore synchronisation object.

The semaphore maintains a set of permits that are created via calls on theincrement

semaphore, and consumed by calls.decrement

If there is no permit available when a call is made, the calling thread blocks untildecrement

a permit is created via an call.increment

Quick start

#include <Balau/Concurrent/Semaphore.hpp>

Using the semaphore is simple.

// Create a semaphore.
Semaphore semaphore;

An initial permit count can be specified at construction time if desired.

// Create a semaphore with an initial permit count of 4.
Semaphore semaphore(4);

Then each participating thread may call and/or accordingly.increment decrement

///// Thread A /////

semaphore.decrement();

///// Thread B /////

semaphore.increment();

// Create a semaphore.

// Create a semaphore with an initial permit count of 4.

///// Thread A /////

/// Decrement the semaphore, blocking if the count is 0.

///// Thread B /////

/// Increment the semaphore, adding a permit.

156 Balau core C++ library

Balau core C++ library 157

SharedMemoryObject
Overview

Shared memory objects that use the Boost Interprocess library.

This documentation covers two classes which are similar in usage:

MSharedMemoryObject;

USharedMemoryObject.

The semantic difference between these two classes is that instances of

 require a call to in child processes after forking, whilstUSharedMemoryObject remap()

instances of do not. The other difference between the two classes isMSharedMemoryObject

that uses half a kilobyte of shared memory for metadata, whilstMSharedMemoryObject

instances of do not.USharedMemoryObject

As operating systems generally allocate entire pages for shared memory (a page is typically

4KB), instances generally use the same amount of memory as MSharedMemoryObject

, unless your object has a size of between 4096N + 3584 and 4096USharedMemoryObject

(N+1), where N is an unsigned integer.

Note also that as shared memory is typically allocated in 4k pages, a whole page will be

allocated even if your object size is a single byte. It is thus not efficient to create a large

number of managed/unmanaged shared memory object instances each containing a small

object. If a large number of small objects need to be shared across multiple processes, the

efficient approach is to create a holder class of these objects and then to create a single

managed/unmanaged shared memory object of the holder.

These template classes encapsulate calls to the in order toBoost Interprocess library

manage the lifetime of a shared memory object, and provide a simple API to construct/open

and use the object.

The shared memory object classes are useful when a simple approach to creating a typed

shared memory object is desired. They can also act as a tutorial introduction into using

shared memory via the Boost Interprocess library. More advance use of shared memory can

then follow by direct use of the Boost library.

Note that when using the shared memory object classes, the type T must have a POD type

structure. If the type contains pointers, the objects pointed to will not share and consequently

your application will be defective. If non-POD data structures are required to be shared

across multiple processes, advanced use of the Boost Interprocess library is recommended.

Quick start

https://www.boost.org/doc/libs/1_68_0/doc/html/interprocess.html

158 Balau core C++ library

Quick start

#include <Balau/Interprocess/MSharedMemoryObject.hpp>

#include <Balau/Interprocess/USharedMemoryObject.hpp>

There are two types of constructors in these classes:

one constructor that creates automatically named shared memory objects;

constructors that explicitly create or open a new or existing named shared memory

object.

The first constructor creates an automatically named shared memory object by generating a

name prefix based on a UUID.

The second set of constructors take a dummy object specifying whether to create or open

the shared memory object, plus the name of the shared memory.

Forked processes

Forking is a simple way to construct and use the share memory object across processes, but

it is only supported by Unix-like operating systems. In order to construct and use a shared

memory object in a parent process and a set of forked child processes, construct the object

in the parent and fork as normal. The Balau class provides a convenient API for forking.Fork

The shared memory object will be ready for use in the child processes without any further

action. The first constructor is used for this.

// The type of object being shared.
struct A {
 int i;
 double d;

 A(int i_, double d_) : i(i_), d(d_) {}
};

 MSharedMemoryObject<A> sharedA(1, 2.0);

 Fork::performFork([&sharedA] () { return runChildLogic(sharedA); }, true)

As previously discussed, use of the class with forking will requireUSharedMemoryObject

subsequent calls to in each child process before the object is usable. Theremap()

equivalent code to the previous example using an instance of is thusUSharedMemoryObject

as follows.

// The type of object being shared.

// Construct the shared memory object before forking.

// Perform the fork. The child will not return.

Balau core C++ library 159

// Construct the shared memory object before forking.
USharedMemoryObject<A> sharedA(1, 2.0);

Fork::performFork(
 [&sharedA] () {
 sharedA.remap();
 return runChildLogic(sharedA);
 }
 , true
)

Independent processes

Processes that are not related by forking may access the same shared memory object by

communicating the name prefix to each process. A choice of constructors are available for

this, which implement the Boost Interprocess , , , and create-only create-or-open open-only

 options.open-read-only

There are two possibilities for communicating the name prefix:

pre-share the name prefix between the processes;

create the object in one process and communicate its name to the other processes in

some way.

With the first solution, a name prefix is decided upon in advance or is algorithmically

generated by the application. One solution to this when sharing an object between multiple

instances of the same application is to construct a name prefix via the application's

executable path. A helper function namePrefixFromAppPath() is available for this in the

 class. Using this solution, a set of shared memory object name prefixesSharedMemoryUtils

can be created by appending predefined strings to the name prefix generated from the

helper function.

Another solution is to pre-share a name prefix that can be guaranteed not to be used by

other processes, either hard wired in the application (not recommended) or via the

application's configuration/options.

The template constructors are used for creating/opening a shared memory object with a pre-

shared or algorithmically generated name.

In order to use a peer-to-peer approach, the constructor can be used.create-or-open

// Construct the shared memory object before forking.

// Perform the fork. The child will not return.

160 Balau core C++ library

// Create the name prefix for the shared memory object.
const std::string name = SharedMemoryUtils::namePrefixFromAppPath() + "_myObj";

 USharedMemoryObject<A> object(OpenOrCreate, name, 2, 4.0);

In order to use a manager-worker approach, the constructor can be used in thecreate-only

manager process and the constructor can be used in the worker processes. Dueopen-only

to the necessity of the queue existing for the worker processes, the manager process will

need to create the queue before the workers attempt to open it.

// Manager process..

 const std::string name = SharedMemoryUtils::namePrefixFromAppPath() + "_myObj";

 USharedMemoryObject<A> object(CreateOnly, name, 2, 4.0);

 const std::string name = SharedMemoryUtils::namePrefixFromAppPath() + "_myObj";

 USharedMemoryObject<A> object(OpenOnly, name);

// Create the name prefix for the shared memory object.

// Create or open the shared memory object with the name prefix.

// Manager process..

// Create the name prefix for the shared memory object.

// Create the shared memory object.

///

// Worker process..

// Create a name prefix for the shared memory object.

// Open the shared memory object.

Balau core C++ library 161

LANG

162 Balau core C++ library

Parsing utilities
Overview

Balau includes a set of classes which can help in the construction of language scanners and

parsers. The aim of these classes is to facilitate the creation of hand written language

scanners and recursive descent parsers written in pure C++.

Given that there are many mature scanner/parser generator tools available, one pertinent

question to ask may be: why write a scanner and parser in pure C++?

Firstly, there is no right or wrong approach to writing a scanner/parser pair. If a generator

tool works well for a particular use case, then such an approach is admirable. However,

given that the parsers of prominent mainstream compilers are hand written (Clang - unified

,), perhaps there are valid reasons for doing so.parser GCC - new C parser

One anecdotal reason often quoted is performance, that is to say that a hand written parser

will supposedly be much faster than a generated one. The evidence does not appear to back

this up (the GCC indicates a negligible 1.5% speed increase). There may thus be awiki

small percentage speed up, but it is unlikely that a speed up measured in orders of

magnitude will occur.

So removing performance from the argument, some benefits are proposed below.

Fine tuning of semantics - Language definitions of any complexity will often require

additional semantic rules that are expressed separately from the language's grammar

specification. These additional semantic rules may not fit naturally into the language

definition processed by a parser generator tool.

Debuggability - The code is hand written pure C++ and thus can be structured for

readability and easy debugging.

Error reporting, diagnostics, recovery - Precise error reporting, diagnostics, and

recovery are easier to achieve when the complete and final scanner/parser source

code is available to edit directly.

Elegance - A hand written recursive descent parser is an elegant solution to a

complex requirement.

Simple toolchain - No additional tools are required for parser source code generation.

The overriding reason to use scanner/parser generator tools is that the amount of code you

need to write is much less than the code required for a hand written scanner and parser.

This is most likely true. However, a language specification is typically created once and then

http://clang.llvm.org/features.html#unifiedparser
http://clang.llvm.org/features.html#unifiedparser
https://gcc.gnu.org/wiki/New_C_Parser
https://gcc.gnu.org/wiki/New_C_Parser

Balau core C++ library 163

subsequently modified over time with only small incremental improvements. The overhead of

creating the larger code base of a hand written scanner and parser is thus likely to be less

than the benefits reaped during fine tuning of the initial implementation and the ease of

adding incremental improvements later on.

Approach

Having read the introductory words in the overview section of this page, it could be natural to

imagine that the parsing utilities in the Balau library are large and complex. This is actually

not the case. The parsing utilities total less than 1000 lines of code and a handful of classes.

As the aim is to hand write a scanner and parser implementation pair, the value of the

utilities lies in the approach rather than the amount of code provided. The parser tools do not

actually provide any classes for parsing at all. The code only provides an abstract scanner

base class and a common contract between the scanner and the to be written parser.

The overall approach to the creation of a new pure C++ based language parser using the

Balau parsing utilities classes is to:

define a token enum that contains the terminals of the language;

create a scanner class that derives from and produces a AbstractScanner

 data structure;ScannedTokens<TokenT>

create a set of abstract syntax tree node classes which represent the non-terminals of

the language;

create a recursive descent parser class which generates the AST by consuming the

 data structure via the tokenScannedTokens<TokenT> ScannerApiScannedTokens

adaptor.

There are currently two language parser implementations in the Balau library that follow this

approach:

the logging configuration parser in the logging framework;

the hierarchical property parser.

Before embarking on the creation of a language parser based on the Balau parser utility

classes, it could be useful to take a look at these parser implementations.

Architecture

The overall architecture supported by the Balau parser utilities is one where:

164 Balau core C++ library

there is complete separation between scanning and parsing stages;

the scanning stage scans the entire text stream ahead of parsing;

the resulting scanned tokens data structure offers infinite look-ahead and look-back;

the whitespace policy during parsing may be dynamically modified via the whitespace

mode stack in the scanner API scanned tokens data structure.

The advantages of such an approach are the separation of concerns between the scanning

and parsing stages, the infinite look-ahead and look-back, and the ease of dynamically

changing the whitespace handling strategy during parsing.

The disadvantage of such an approach is the necessity of specifying a single token set

which covers all possible tokens of the language, i.e. it is not possible to define multiple

token sets, the active set then being selected according to context during the parsing stage.

There are a number of ways of mitigating this disadvantage when a parser cannot be trivially

implemented with a complete separation between scanner and parser for a particular

language grammar. One solution could be to define a single token for the contextual part of

the language and then define a second scanner which is triggered separately from within the

parser. Another solution could be to define a set of tokens that represent the input text and

then, under certain exceptional code paths in the parser, translate subsets of the input

tokens on the fly into a modified set of tokens for further parsing.

Scanned tokens

#include <Balau/Lang/Common/ScannedTokens.hpp>

An instance of the class is generated by the scanner andScannedTokens<TokenT>

consumed by the parser. This class is an efficient data structure which contains the input

text as a UTF-8 string and two additional arrays:

an array that contains the tokens, which are typically specified as an 8 bit unsigned

char typed enum;

a second array that contains the start offsets into the input text.

In order to use the scanned tokens data, instantiation of an adaptor class is required. There

are three adaptor classes, destined for different functionalities:

ScannerApiScannedTokens;

RandomAccessScannedTokens;

IterativeScannedTokens.

Balau core C++ library 165

Scanner Api

With the adaptor class, a standard scanner API is provided forScannerApiScannedTokens

use by a traditional downstream parsing stage. This is the adaptor that is used if traditional

parsing is required.

The adaptor class provides the following methods.ScannerApiScannedTokens

Method Description

get
Get the current scanned token, optionally consuming blanks, line breaks,

and/or comments as determined by the current whitespace mode.

consume Consume the current token.

expect(token)
Consume the current token if it is equal to the supplied token, otherwise

register an error report or throw an exception.

expect(tokens)
Consume the current token if it is equal one of the supplied tokens,

otherwise register an error report or throw an exception

putBack
Put back the current token, optionally restoring blanks, line breaks, and

/or comments as determined by the current whitespace mode.

mark Record a token position marker for a subsequent multiple putBack call.

putBack(marker) Put back to the specified marker.

pushWhitespaceModePush the specified whitespace mode onto the whitespace mode stack.

popWhitespaceModePop the top of the whitespace mode stack.

getCurrentCodeSpanGet the code span for the current token's text.

reset
Reset the scanner state to the beginning of the token list and with an

empty whitespace mode stack.

size Get the number of tokens produced from the scanned text.

moveTextOut Move the text of the scanner out (prevents further scanning calls).

The methods that register an error report do so via a supplied error report functionexpect

that produces an error report. The report is added to the supplied container. These expect

methods should be used if an error recovery type parser is required, as opposed to a fail on

first error parser.

Due to the compact representation of the scanned token data, obtaining the code span of a

token's text must be performed by iterating from the start of the arrays. When using the

 adaptor class, the current code span is maintained forScannerApiScannedTokens

immediate use. Due to this, the current code span may be accessed without any

performance penalty.

The scanner API also provides classification methods for the current token and token

specified by a marker:

166 Balau core C++ library

currentIsBlank;

currentIsLineBreak;

currentIsWhitespace;

isBlank(marker);

isLineBreak(marker);

isWhitespace(marker);

Random access

If random access to the scanned token data and code spans is required for other uses, the

 adaptor class may be used to pre-calculate the code spans.RandomAccessScannedTokens

When instantiated, this class iterates over the token set and calculates all the code spans.

Due to this, the class has a higher memory overhead thanRandomAccessScannedTokens

the class.ScannerApiScannedTokens

Iteration

When iteration is required over the scanned tokens, this third adaptor class is provided for

such applications. The adaptor class provides standard C++IterativeScannedTokens

iterators onto the scanned tokens.

Scanning

#include <Balau/Lang/Common/AbstractScanner.hpp>

In order to create a data structure from some input source code text, aScannedTokens

scanner implementation is required. Balau provides an base class.AbstractScanner

Concrete implementations of this class implement the abstract method ingetNextToken

order to provide the scanning logic.

The class provides the public scanner api, consisting of the single AbstractScanner scan

method, and a set of protected utility methods used by implementing classes.

The fundamental utility methods used by implementing classes are the and readNextChar

 methods. These manage character reading and end of file handling.putBackCurrentChar

Other utility methods including string and whitespace extraction. Also included is a

 method which can be used for error reporting.calculateCurrentCodeSpan

Balau core C++ library 167

Parsing

To create a recursive descent parser in pure C++ using the Balau parser utility classes, it is

sufficient to pass in an instance of the class into the parserScannerApiScannedTokens

constructor and access the scanner API from within the production methods.

The class is an example of a parser in the Balau library. A single publicPropertyParser

method is provided in each class. This method calls the root production methods inparse

order to initiate the recursive descent parsing.

Classes

The following classes are defined in the parsing utilities.

Class name Description

ScannedTokens<TokenT>

The data structure produced by scanners. Contains

the input source text, the scanned tokens, and the

start offsets.

ScannerApiScannedTokens<TokenT>
A scanner API adaptor over the data ScannedTokens

structure.

RandomAccessScannedTokens<TokenT>
A random access adaptor over the ScannedTokens

data structure.

IterativeScannedTokens<TokenT>
An iterative adaptor over the data ScannedTokens

structure.

AbstractScanner<TokenT> The base class of scanner implementations.

ScannedToken<TokenT>
A single scanned token returned from the scanner

API, containing the token, the text, and the code span.

CodeSpan
Contains two code positions which together indicate a

span of code.

CodePosition
Represents a line/column position in the source code

text.

168 Balau core C++ library

Balau core C++ library 169

Hierarchical properties
Overview

This chapter describes a hierarchical property file format and associated C++ parser. The

format has been conceived principally for describing application, environment, and logging

configuration. The format is based upon a hierarchical extension to the Java file.properties

format. Composite properties are defined via and delimited blocks."{" "}"

In addition to providing composite properties, the hierarchical property format provides an

 feature. This allows property files to be spread over multiple files and compiled viainclude

inclusion. Includes are specified via the directive."@"

The hierarchical properties parser and scanner are written in pure C++, using the Balau

parser utility classes.

The hierarchical properties parser can also parse non-hierarchical Java properties files. The

exception that cannot be parsed is when a non-hierarchical properties file contains one or

more names and/or values that contain unescaped special hierarchical characters. As the "{"

, and characters are used to indicate hierarchical blocks and include directives,"}" "@"

parsing will fail if names and/or values are defined with these characters in them. Property

names and values that contain these character can nevertheless be defined by escaping the

special characters with a ."\"

No file extension has been explicitly denoted to indicate hierarchical properties files. Given

that the hierarchical property file format is effectively just a text based serialisation format,

files themselves do not have any intrinsic semantics. It is thus proposed that users should

define their own file extensions which attach semantic value to file contents. The Balau

library thus uses the extension for hierarchical properties files without specific.properties

semantics, the extension for environment configuration type specification files, and.thconf

the extension for environment configuration value files. The .hconf environment configuration

chapter discusses this in more detail.

Quick start

Format

The following is a simple example of a hierarchical property file. In the example file, the "="

separator is used for simple (non-hierarchical) properties and the " " separator is used for

complex (hierarchical) properties. As with the non-hierarchical properties format, any of the

"=", ":", or " " separators can be used for both simple and composite properties.

170 Balau core C++ library

http.server.worker.count = 8

 file.serve {
 location = /
 document.root = file:src/doc
 cache.ttl = 3600
}

The hierarchical property format includes the same set of features as the non-hierarchical

property format, including comments, escape codes and line continuation.

\#a\ complexly\ named\ property\# = \{ a value with curly brackets \}

prop = a value with ## hash !! and excl

 group.config {

 files = file1.txt \
 , file2.txt \
 , file3.txt
}

Included files can be specified via the directive. This directive takes an absolute URI, an"@"

absolute path, or a relative path.

@https://borasoftware.com/doc/examples/hprops.properties

@/etc/balau/default-sites/default.site

@extra-sites/special.site

When an absolute or relative path is specified as in the second and third examples above,

the URI type resolved should be the same as the URI of the property file that contains the

include directive (this is performed by the implementation consuming the parsed file

contents). For example, if the above example property file was supplied as a file URI, the

absolute and relative path include directives would resolve to file URIs.

Include directives may also contain glob patterns.

@sites-enabled/*.site

A hierarchical property file that has comments,
escaped characters, and line continuation.

Use of line continuation.

An HTTPS include directive.

An absolute path include directive.

A relative path include directive.

A globbed, relative path include directive.

Balau core C++ library 171

Glob patterns are only supported by certain URI types (e.g. files and zip archives). It is the

responsibility of the property file writer/consumer to ensure that globbed includes are only

used for URI types that support them.

Parsing

#include <Balau/Lang/Property/PropertyParsingService.hpp>

Creating a hierarchical properties parser and parsing some input text involves a single line of

code.

// The input URI that represents the source properties text (normally sourced elsewhere).
Resource::File input("somePropertyFile.properties");

 Properties properties = PropertyParsingService::parse(input);

Printing the parsed properties AST back into text can be achieved via the

 visitor class. This is normally performed via the PropertyAstToString PropertyNode toString

function.

// Pretty print the hierarchical properties AST back out to a string.
std::string propertiesText = toString(items);

Visiting

#include <Balau/Lang/Property/Util/PropertyVisitor.hpp>

Once the input properties text has been parsed into an AST, it can be visited by

implementing the interface.PropertyVisitor

As an example, an extract from the class provided in the Balau libraryPropertyAstToString

is given below.

// The input URI that represents the source properties text (normally sourced elsewhere).

// Call the parsing service.

// Pretty print the hierarchical properties AST back out to a string.

172 Balau core C++ library

class PropertyAstToString : public PropertyVisitor {
 public: void visit(Payload & payload, const Properties & object) override {
 for (auto & node : object.getNodes()) {
 node->visit(payload, *this);
 }
 }

 public: void visit(Payload & payload, const ValueProperty & object) override {
 auto & pl = static_cast<PropertyAstToStringPayload &>(payload);
 pl.writeIndent();
 pl.write(object.getName());
 pl.write(" = ");
 pl.write(object.getValue());
 pl.write("\n");
 }

 public: void visit(Payload & payload, const CompositeProperty & object) override {
 auto & pl = static_cast<PropertyAstToStringPayload &>(payload);
 pl.writeIndent();
 pl.write(object.getName());
 pl.write(" {\n");
 pl.incrementIndent();

 for (const auto & node : object.getNodes()) {
 node->visit(payload, *this);
 }

 pl.decrementIndent();
 pl.writeIndent();
 pl.write("}\n");
 }

};

When creating a custom properties AST visitor implementation, a quick way of achieving this

is to copy the class and modify it to meet the requirements of the newPropertyAstToString

visitor implementation.

Hierarchical format

The basic format of the hierarchical property format is the same as that of Java .properties

files.

Leading blanks of each line are stripped.

Resulting lines that do not begin with a '#' or '!' character and that end with the '\'

character are concatenated with the next line.

Resulting lines that begin with a '#' or '!' character are comments.

// ... more visitor methods ...

Balau core C++ library 173

Property lines have a key and an optional value, separated by a key value separator.

Key-value separators are ':', '=', or blanks.

Blanks can surround ':' and '=' separators; these do not form part of the key and value.

The entire remaining line after the separator and optional blanks is the value, including

any trailing blanks.

Special characters (blank, ':', '=', '#', '!', '\') can be used in keys by escaping them with

a '\' prefix.

Unrecognised escaped characters result in the '\' prefix being silently dropped.

The following additional rules add the hierarchical extension to the Java file.properties

format.

The '{', '}', and '@' characters must be escaped when used in property names and

values.

A non-escaped '{' character that follows a property separator denotes the start of a

hierarchical property block.

The '{' character of a hierarchical property block must immediately be followed by a

line break.

A matching '}' character must exist that denotes the block end. The '}' block end

character must be placed on a line of its own.

In between the '{' and '}' property block delimiters, zero or more child properties may

be defined, including more hierarchical properties.

A non-escaped '@' character at the start of a line denotes the start of an include

directive. The URI (full, partial absolute path, or partial relative path) following the '@'

character represents the include URI.

Indentation of block closing '}' characters and include directive '@' characters is not

relevant and is stripped during parsing.

Classes

All the classes are found in the namespace.Balau::Lang::Property

174 Balau core C++ library

Class/enum Description

PropertyToken Language terminals enum

PropertyNode Abstract base class of the language non-terminal AST nodes

PropertyScanner The property scanner implementation

PropertyParser The property parser implementation

PropertyParserService Convenience class providing single function parsing.

PropertyVisitor The tightly coupled AST visitor interface

PropertyAstToString Property AST pretty printer

Data structures

The data structures used to hold the data generated from the Balau hierarchical properties

parser are as follows.

Node classes can only exist within the context of an owning instance that ownsProperties

the parsed string.

Balau core C++ library 175

///
/// Partial base class of nodes.
///
struct PropertyNode {
};

 struct Properties : public PropertyNode {
 std::string text;
 std::vector<std::unique_ptr<PropertyNode>> nodes;
};

 struct ValueProperty : public PropertyNode {
 std::string_view key;
 std::string_view value;
};

 struct CompositeProperty : public PropertyNode {
 std::string_view key;
 std::vector<std::unique_ptr<PropertyNode>> nodes;
};

 struct IncludePropertyNode : public PropertyNode {
 std::string_view text;
};

 struct CommentPropertyNode : public PropertyNode {
 std::string_view text;
};

As the AST classes are views onto the original input text, the names and values of

properties are string views onto the original text, including any line continuation / leading

blank combinations. In addition, escaped characters are in their escaped form.

In order to obtain final name and value text, the AST class has and ValueProperty getName

 methods, and the AST class has a method. ThesegetValue CompositeProperty getName

methods will process name and value text into the final form.

///
/// Partial base class of nodes.
///

///
/// The outer structure. A single instance of this
/// struct represents the entire parsed properties text.
///

///
/// Partial implementation of a key-value node.
///

///
/// Partial implementation of a hierarchical node.
///

///
/// Partial implementation of an include node.
///

///
/// Partial implementation of a comment line node.
///

176 Balau core C++ library

Grammar

Notation

The following notation is used in the grammar.

Symbol Meaning

= definition of rule

() grouping for precedence creation

* zero or more repetitions

+ one or more repetitions

? optional

| choice separator

(^ .. | ..) any except the content choice

"text" literal string in terminal

// .. comment

The choice separator has lowest notation precedence. All other notational entities have

equal precedence.

Whitespace

A "\" character placed at the end of a line indicates line continuation. All non-escaped blanks

(space/tab) occurring at the start of a line are semantically removed from property names

/values that are broken up by line continuation. This is not represented in the grammar and

thus occurs after parsing.

Explicit non-terminals

// Explicit non-terminals are the produced AST nodes.

 = S Properties

 = *Properties Property

 = * (| | |)Property Blank ValueProperty ComplexProperty Include Comment
 (| ?)LineBreak LineBreak EndOfFile

 = (?)?ValueProperty Key Assignment Value

 = * ComplexProperty Key Assignment OpenCurly LineBreak Property CloseCurly

 = Include Arobase
 (| | | | OpenCurly CloseCurly Arobase Colon Equals
 | | | | |)+Blank Hash Exclamation Text BackSlash

Balau core C++ library 177

 = (|)Comment Hash Exclamation
 (| | | | OpenCurly CloseCurly Arobase Colon Equals
 | | | | |)*Blank Hash Exclamation Text BackSlash

Implicit non-terminals

// Implicit non-terminals are assimilated into produced AST nodes.

 = ((? (|) ?) |)Assignment Blank Equals Colon Blank Blank

 = Key KeyStart KeyCont

 = | | KeyStart Text EscapedOpenCurly EscapedCloseCurly
 | | | EscapedArobase EscapedColon EscapedEquals
 | | | EscapedHash EscapedExcl EscapedBackSlash
 | | | ()EscapedBlank EscapedChar LineCont KeyCont

 = (| | KeyCont Text EscapedOpenCurly EscapedCloseCurly
 | | | EscapedArobase EscapedColon EscapedEquals
 | | | EscapedHash EscapedExcl EscapedBackSlash
 | | | EscapedBlank EscapedChar Hash
 | | ()Exclamation LineCont KeyCont
)*

 = Value ValueStart ValueCont

 = | | ValueStart Text EscapedOpenCurly EscapedCloseCurly
 | | | EscapedArobase EscapedColon EscapedEquals
 | | | EscapedHash EscapedExcl EscapedBackSlash
 | | | EscapedBlank EscapedChar Hash
 | | | Exclamation CloseCurly Colon
 | | | ()Equals Blank LineCont ValueCont

 = (| | ValueCont Text EscapedOpenCurly EscapedCloseCurly
 | | | EscapedArobase EscapedColon EscapedEquals
 | | | EscapedHash EscapedExcl EscapedBackSlash
 | | | EscapedBlank EscapedChar Hash
 | | | Exclamation CloseCurly Colon
 | | | Equals Blank OpenCurly
 | ()LineCont ValueCont
)*

 = *LineCont EscapedLineBreak Blank

Terminals

// The terminal strings in the definitions use \t, \r, \n, and \\
// placeholders in regular expressions (purple strings) to denote
// tab, carriage return, line feed, and BackSlash characters.

 = OpenCurly "{"
 = CloseCurly "}"

 = Arobase "@"

178 Balau core C++ library

 = Arobase "@"
 = Colon ":"
 = Equals "="

 = space | Blank "\t"
 = LineBreak "\r\n|\n\r|\n|\r"

 = Hash "#"
 = Exclamation "!"

 = no further input availableEndOfFile
 = Text "[^{}@:= \t\r\n#!\\]+"

 = BackSlash "\"

 = EscapedOpenCurly "\{"
 = EscapedCloseCurly "\}"

 = EscapedArobase "\@"
 = EscapedColon "\:"
 = EscapedEquals "\="

 = EscapedHash "\#"
 = EscapedExcl "\!"

 = EscapedBackSlash "\\"
 = | EscapedBlank "\ " "\\\t"
 = EscapedChar "\\[^{}:=#!\\ \t\r\n]"

 = EscapedLineBreak "\\(\r\n|\n\r|\r|\n)"

Balau core C++ library 179

NETWORK

180 Balau core C++ library

HTTP client
Overview

HTTP and HTTPS clients that use the Boost Asio and Beast libraries.

The clients currently provide synchronous GET, HEAD, and POST calls.

Quick start

#include <Balau/Network/Http/Client/HttpClient.hpp>

#include <Balau/Network/Http/Client/HttpsClient.hpp>

Construction

In order to create a client, specify the host to the client constructor.

// Create an HTTPS client with default SSL port 443.
HttpsClient client("borasoftware.com");

The default user agent used in the client is " ", where is theBalau <version> <version>

version of the Balau library. The HTTP version in the above client is version 1.1.

If the required port, user agent and/or HTTP version are different to the default values, they

can be specified in the constructor

// Create an HTTP client with port 12345.
HttpClient client1("example.com", 12345);

 HttpClient client2("example.com", 12345, "Anon");

 HttpClient client3("example.com", 12345, "Anon", "1.0");

If the scheme in the URL should determine whether an HTTP or HTTPS client should be

created, the static method can be used. In this API, the optional portHttpClient::newClient

number should also be included in the URL.

// Create HTTP or HTTPS clients, according to the supplied URL.
auto client4 = HttpClient::makeClient("https://borasoftware.com");

 auto client5 = HttpClient::makeClient("http://example.com:12345");

The static method also accepts an optional user agent and HTTPHttpClient::newClient

version.

// Create an HTTPS client with default SSL port 443.

// Create an HTTP client with port 12345.

// Create an HTTP client with port 12345 and user agent "Anon".

// Create an HTTP client with port 12345, user agent "Anon", and HTTP version 1.0.

// Create HTTP or HTTPS clients, according to the supplied URL.

Balau core C++ library 181

// Create a client with a custom user agent.
auto client6 = HttpClient::makeClient("https://borasoftware.com", "Anon");

 auto client7 = HttpClient::makeClient("http://example.com:12345", "Anon", "1.0");

Usage

In order to perform synchronous GET, HEAD, and POST calls, the , , and get head post

methods can be used.

// Perform a GET request.
CharVectorResponse response1 = client.get("/");

 EmptyResponse response2 = client.head("/");

 const std::string body = generateBody();
 CharVectorResponse response3 = client.post("/api/execute", body);

The GET and POST requests return a , which contains responseCharVectorResponse

headers and a character vector body. The HEAD request returns an , whichEmptyResponse

only contains response headers.

// Create a client with a custom user agent.

// Create a client with a custom user agent and HTTP version 1.0.

// Perform a GET request.

// Perform a HEAD request.

// Perform a POST request.

182 Balau core C++ library

Balau core C++ library 183

HTTP server
Overview

An HTTP and WebSocket server that uses the Boost Asio and Beast libraries.

A Balau HTTP server instance contains two trees of web applications, one for HTTP and

another for WebSockets. These trees allow the server to handle HTTP requests differently,

according to the HTTP request paths. WebSocket clients are also connected to different

WebSocket applications, based on the HTTP request path active during the WebSocket

upgrade.

Complex routing and handling of HTTP requests by a single HTTP server may be created

via the creation of a sophisticated HTTP web application tree. Similarly, the specification of

the WebSockets application tree allows multiple WebSockets applications to be provided by

the same HTTP server.

There are two ways to use the HTTP server:

specify server configuration parameters and web application trees directly via one of

the HTTP server's constructors;

specify HTTP server and web application tree configuration via environment

.configuration

The first type of usage is a more traditional approach to application development, where the

web application framework is fixed at code creation.

The second type of usage allows different web application configurations to be specified for

different environments whilst using the same pre-compiled application. The resulting

environment configurations provide the configurable parameters of the main HTTP server

and the web applications, modifiable independently of application compilation.

Quick start

#include <Balau/Network/Http/Server/HttpServer.hpp>

Environment configuration: http.server

Hardwired

There are two HTTP server constructors available for direct usage.

The first constructor accepts global server configuration and both predefined HTTP and

WebSocket handlers. By specifying routing web application handlers, this constructor also

184 Balau core C++ library

allows full HTTP and WebSockets application trees to be specified. If no WebSockets

handler or application tree is required, a null handler may be specified.

The second constructor accepts global server configuration and a document root. This

constructor is useful in order to create a simple file serving HTTP server.

Both these constructors may be used within an injector provider if required, in order to

integrate them into the application's bindings tree.

Please refer to the HTTP server source code or the Balau API documentation to see the

exact signatures of the two constructors.

Injected

The injectable constructor of the HTTP server takes an instance.EnvironmentProperties

When supplied from the injector, this is bound to the root bindingEnvironmentProperties

with name " ".http.server

HttpServer(std::shared_ptr<System::Clock> clock,
 std::shared_ptr<EnvironmentProperties> configuration,
 bool registerSignalHandler = true);

The clock instance should be provided by another binding in the injector's application

configuration. The boolean binding is defaulted to viahttp.server.register.signal.handler true

the Balau environment configuration specifications. If you intend to set up your own signal

handlers which will manage the HTTP server's shutdown, your environment configuration

should have a root property set to .http.server.register.signal.handler false

The above constructor will be called by the injector when a suitable binding is added to the

application configuration.

// Example application configuration for the HTTP server.
class AppConfig : public Balau::ApplicationConfiguration {
 public: void configure() const override {
 bind<Balau::System::Clock>().toSingleton<Balau::System::SystemClock>();
 bind<Balau::Network::Http::HttpServer>().toSingleton();
 }
};

Once the HTTP server binding has been specified in the application configuration, an

environment configuration entry for the HTTP server will need to be created, with name "http.

 binding. The contents of the HTTP server's environment configuration will depend onserver"

the usage requirements and the required web application trees. Please refer to the http.

 environment configuration documentation for more information.server

// Example application configuration for the HTTP server.

Balau core C++ library 185

During instantiation, the HTTP server will create an HTTP routing web application and a

WebSockets routing web application, and will populate them with instances of the web

applications specified in the HTTP server's environment configuration.

Below is an example of environment configuration for an HTTP server configured with file

server and email sender HTTP web applications.

http.server {
 info.log = file:logs/access.log
 error.log = file:logs/error.log
 server.id = My server
 worker.count = 8
 listen = 127.0.0.1:8080

 @file:mime.types.hconf

 http {
 files {
 location = /
 root = file:www
 }

 email.sender {
 location = /ajax/send
 host = smtp.example.com
 port = 465
 user = email-sender
 subject = MESSAGE RECEIVED
 from = enquiry@example.com
 to = enquiry@example.com
 user-agent = Balau

 success = /success.html
 failure = /failure.html

 parameters {
 Name = 1
 Email = 2
 Tel = 3
 Body = 4
 }
 }
 }
}

In order to create a binding in the injector for the environment configuration, an

 instance for the environment resource(s) will need to be created.EnvironmentConfiguration

In addition to a URI for the environment configuration, the instance should be supplied with a

Mime types specified in a different file.

These will be served by the file serving web app.

These parameters should match the POST request form data.

186 Balau core C++ library

URI specifying the Balau environment specifications. These specifications will be used to

provide type information and any default values not provided in the configuration.

///////////// Create the application injector. /////////////

 auto env = Resource::File("path/to/env/env.hconf");

 auto creds = Resource::File("path/to/env/creds.hconf");

 auto specs = Resource::File("path/to/specs/balau.thconf");

 auto appConf = AppConfig();
 auto envConf = EnvironmentConfiguration({ env, creds }, { specs });

 auto injector = Injector::create(appConf, envConf);

Configuration

This section discusses the HTTP server configuration in more detail.

Main configuration

The HTTP server main configuration properties are supplied within a composite http.server

composite property. This property forms a container of all configuration required by the

HTTP server and web applications, with the exception of credentials properties.

The hierarchical structure of the main configuration also specifies the HTTP and WebSocket

web application hierarchies. During instantiation, the HTTP server will instantiate the

appropriate web applications, according to the environment configuration.

The structure of the main configuration takes the form of a set of HTTP value properties,

plus a hierarchical set of composite properties. Each property specifies alocation location

location, the web application handler, and the web application's configuration.

The following is an example of a simple HTTP server main configuration that has a file

serving web application and an email sending web application.

http.server {

 logging.ns = http.server
 info.log = file:logs/access.log
 error.log = file:logs/error.log
 server.id = My server

///////////// Create the application injector. /////////////

// A file pointing to the environment configuration given above.

// A file pointing to the environment's credentials configuration.
// This is required for the email.sender user password.

// A file pointing to the Balau environment specifications.

// Create the injector configurations.

// Create the injector.

######### General server properties #########

Balau core C++ library 187

 server.id = My server
 worker.count = 8
 listen = 127.0.0.1:8080

 @file:mime.types.hconf

 filters {

 }

 http {
 files {
 location = /
 root = file:www
 }

 email.sender {
 location = /ajax/send
 host = smtp.example.com
 port = 465
 user = email-sender
 subject = MESSAGE RECEIVED
 from = enquiry@example.com
 to = enquiry@example.com
 user-agent = Balau

 success = /success.html
 failure = /failure.html

 parameters {
 Name = 1
 Email = 2
 Tel = 3
 Body = 4
 }
 }
 }

 ws {

 }
}

Include mime types file.

############ HTTP request filters ###########

TODO

HTTP web application properties

These will be served by the file serving web app.

These parameters should match the POST request form data.

WebSockets web application properties

TODO

188 Balau core C++ library

Credentials management

HTTP server web application credentials are supplied in the same hierarchy as the main

web application configuration. In order to physically separate confidential credentials from

the main environment configuration, a parallel tree may be created that contains only

credentials information. The two configuration trees will then be merged together by the

injector's environment configuration logic, resulting in a single tree.

In order to merge the two configuration files, a single instanceEnvironmentConfiguration

should be created.

auto env = EnvironmentConfiguration({ env, creds }, { specs });

Balau core C++ library 189

HTTP web applications
Overview

This documentation chapter contains information on the HTTP web application framework

and the predefined HTTP web applications currently available in the Balau library.

Developers may also define their own HTTP web applications.

Framework

Creation

The HTTP web application framework is based around the base class. AllHttpWebApp

HTTP web applications are derived from this base class. HTTP web applications must be

registered with the HTTP server framework. Predefined Balau HTTP web applications are

automatically registered at application startup. Custom HTTP web applications may be

registered by calling before creatingHttpWebApp::registerHttpWebApp<WebAppT>(name)

the application injector.

Each HTTP web application implements the three request call methods:

void handleGetRequest(HttpSession & session,
 const StringRequest & request,
 std::map<std::string, std::string> & variables) override;

 void handleHeadRequest(HttpSession & session,
 const StringRequest & request,
 std::map<std::string, std::string> & variables) override;

 void handlePostRequest(HttpSession & session,
 const StringRequest & request,
 std::map<std::string, std::string> & variables) override;

HTTP session

The passed during a request call references the active HTTP session for theHttpSession

request in progress. The session object is active on a single thread and may handle multiple

keep-alive round trips. The session object provides access to:

the HTTP server's main configuration;

the remote IP address for logging;

the client session;

the cookies sent in the request;

190 Balau core C++ library

the sendResponse method used to send the response.

Client session

The client session referenced within the HTTP session is a long lived session that is

obtained on each request by examining the session cookie sent by the client. The name of

this session cookie may be specified in the HTTP server's global configuration. By default,

the name of the session cookie is .session

The client session Id is present for web applications to use in order to allow stateful sessions

such as logins and carts.

Request object

The request object passed during a request call is the full Boost Beast request. Web

applications can access request fields and other information available from the Beast

request message API.

Request variables

The request variables map passed during a request call are variables that are created and

consumed by filters and web applications during the request. They are not related to the

request HTTP fields. An example of request variables can be seen in the HTTPredirections

web application, which creates temporary request variables named , , , etc. for$1 $2 $2

regular expression groupings in the redirection matches.

Configuration

Each web application must have a parameter in its configuration. The value of thislocation

parameter is a space delimited set of location prefixes that the web application will handle.

During instantiation, the HTTP server will read this parameter on each web application's

configuration and use the location prefixes within to construct the request routing.

Web applications

File server

#include <Balau/Network/Http/Server/HttpWebApps/FileServingHttpWebApp.hpp>

Environment configuration: files

The file serving HTTP web application serves files from a directory on the local file system.

See the environment configuration for details on how to configure the file serving HTTPfiles

web application.

Balau core C++ library 191

Email sender

#include <Balau/Network/Http/Server/HttpWebApps/EmailSendingHttpWebApp.hpp>

Environment configuration: email.sender

The email sending HTTP web application sends an email with a body generated from the

form parameters of a POST request. This can be useful for creating a contact page.

See the environment configuration for details on how to configure the emailemail.sender

sending HTTP web application.

Redirector

#include <Balau/Network/Http/Server/HttpWebApps/RedirectingHttpWebApp.hpp>

Environment configuration: redirections

The redirecting HTTP web application performs 301 or 302 redirections for specified

locations.

See the environment configuration for details on how to configure the redirectingredirections

HTTP web application.

Canned

#include <Balau/Network/Http/Server/HttpWebApps/CannedHttpWebApp.hpp>

Environment configuration: canned

The canned HTTP web application serves fixed responses for GET, HEAD, and POST

requests.

See the environment configuration for details on how to configure the canned HTTPcanned

web application.

Failing

#include <Balau/Network/Http/Server/HttpWebApps/FailingHttpWebApp.hpp>

Environment configuration: failing

The failing HTTP web application returns HTTP 404 responses for all requests.

See the environment configuration for details on how to configure the failing HTTPfailing

web application.

192 Balau core C++ library

Routing

#include <Balau/Network/Http/Server/HttpWebApps/RoutingHttpWebApp.hpp>

Environment configuration: n/a

The current routing web application may be replaced by a regular expression based routing

web application in the future.

The routing HTTP web application contains a trie data structure used to route HTTP

requests to different HTTP web applications.

The routing HTTP web application is normally used implicitly via environment configuration.

The HTTP server will instantiate a routing HTTP web application when creating the HTTP

web application tree. When defining the HTTP server HTTP web applications via

environment configuration, it is thus not necessary to explicitly define a routing HTTP web

application.

The routing HTTP web application may be explicitly used when manually building an HTTP

web application routing tree in code. Simple examples of this are available in the Balau unit

tests. For example, one of the email sender unit tests defines the following routing HTTP

web application.

// Create the routing HTTP web app, specifying the root node.
RoutingHttpWebApp::Routing routing(routingNode<FailingHttpWebApp>(""));

routing.add(
 routingNode("1")
 , RoutingHttpWebApp::Node::child(
 RoutingHttpWebApp::Value(
 "send-message", emailHandler, emailHandler, emailHandler
)
)
);

In order to facilitate the manual building of routing trees, the RoutingHttpWebApp.hpp

header contains the following helper methods and type.

Name Description

routingNode Make a routing node (3 overloads).

RoutingHttpWebApp::Node::child
Add a child of the child being added, plus

descendants of the child (2 overloads).

RoutingHttpWebApp::Value The tuple type representing a routing node.

// Create the routing HTTP web app, specifying the root node.

// Add the email sender handler at path "/1/send-message".

Balau core C++ library 193

WebSocket app framework
Overview

This documentation chapter is pending.

Quick start

#include <Balau/Network/Http/Server/WsWebApp.hpp>

This documentation chapter is pending.

194 Balau core C++ library

Balau core C++ library 195

SYSTEM

196 Balau core C++ library

Clock
Overview

The Balau clock infrastructure consists of a base interface and a single Clock SystemClock

implementation.

The interface is both a convenient API for clock functions, but more importantly is aClock

way to allow the injection of a test clock implementation into production code. This allows the

manipulation of the clock from within test methods in order to simulate changes in time.

The clock API uses both std::chrono and the embedded library in the Hinnant date ThirdParty

folder.

Quick start

#include <Balau/System/Clock.hpp>

#include <Balau/System/SystemClock.hpp>

Clock binding

When developing an application, a binding should be added to the application's mainClock

injector configuration. Then classes that require the clock API can have the clock injected

into them via their injectable constructor.

// The application's main injector configuration.
class Configuration : public ApplicationConfiguration {
 public: void configure() const override {

 bind<Clock>().toSingleton<SystemClock>();

 }
};

 class AService {
 std::shared_ptr<Clock> clock;

 BalauInjectConstruct(
 AService
 , clock

);
};

// The application's main injector configuration.

// The production clock implementation.

// ... more binding declarations ...

// An injector aware class that requires the clock API.

// ... more dependencies ...

// ... more injectables ...

https://github.com/HowardHinnant/date

Balau core C++ library 197

In order to test the class, a test clock may be created by deriving from either the Clock

interface directly or extending the class and reimplementing one or more of theSystemClock

methods. An instance of this test clock can then be injected (manually or via a test injector)

into the class to be tested.

Clock API

The clock API is currently quite brief. More features will be added in future releases.

The following methods are declared.

Method name Description

now Get the current time point.

today Get the current date.

nanotime Get the current time in nanoseconds since the unix epoch.

millitime Get the current time in milliseconds since the unix epoch.

198 Balau core C++ library

Balau core C++ library 199

Sleep utilities
Overview

The namespace class contains static methods that cause the current thread to sleepSleep

for the specified duration.

Quick start

#include <Balau/System/Sleep.hpp>

The following static methods are declared.

Method name Description

sleep Sleep for the indicated number of seconds.

milliSleep Sleep for the indicated number of milli-seconds.

microSleep Sleep for the indicated number of micro-seconds.

nanoSleep Sleep for the indicated number of nano-seconds.

200 Balau core C++ library

Balau core C++ library 201

Thread naming
Overview

The namespace class provides a way to set a thread local string that is usedThreadName

by the logging system for the name of the current thread.

The implementation is very simple and only allows access to the thread name from the

thread itself. exists mainly to support logging, but may be used for otherThreadName

applications that do not need to access the names of other threads.

It is the responsibility of the end developer to ensure the same name is not used for multiple

threads.

Quick start

#include <Balau/System/ThreadName.hpp>

The namespace class provides two static methods, one for setting the currentThreadName

thread's name and another to get the current thread's name.

// Set the current thread's name.
ThreadName::setName("Main");

 const auto & name = ThreadName::getName();

Once a thread's name has been set, the logging system's format specifier will print%thread

the thread name instead of the native platform's thread id.

// Set the current thread's name.

// Get the current thread's name.

202 Balau core C++ library

Balau core C++ library 203

UTIL

204 Balau core C++ library

Compression utilities
Overview

This header provides user friendly compression utility functions defined within the Balau::

 namespace, and the / class pair for zip file access andUtil::Compression Unzipper Zipper

mutation.

Quick start

Gzip utilities

The class is a namespace class that contains functions to deflate and inflate dataGzip

between files, strings, and streams.

The following static methods are currently defined.

Function name Description

gzip Gzip the input file/string/ostream to the specified output file.

gunzip Gunzip the input file to the specified output file/string/istream.

Each method is overloaded to allow file, string, and stream input/output.

Zipper and Unzipper

These classes provide reading and writing functionality for zip files. provides aUnzipper

reading API for immutable zip files. extends the reading API with mutationZipper Unzipper

functionality.

The implementation uses as the backend implementation. Consequently, the readLibZip

and write APIs reflect the functionality of the backend library. Refer to the Balau Unzipper

and API documentation for more information on these classes.Zipper

In addition to the and classes, the and associated resourceZipper Unzipper ZipFile ZipEntry

classes use the class to provide a recursive iterator into zip archives. For moreUnzipper

information, refer to the and documentation.ZipFile ZipEntry

https://libzip.org

Balau core C++ library 205

Date-time utilities
Overview

This header provides user friendly date/time utility functions, defined within the Balau::Util::

 namespace.DateTime

Balau includes a copy of the library in the folder. The library is usedHinnant date ThirdParty

by Balau and can be used directly in applications that use Balau. Documentary references to

this library refer to the library as the .HH date library

Quick start

#include <Balau/Util/DateTime.hpp>

The following functions are currently implemented. More information is available on the API

 page.documentation

Function name Description

toString Format the time point as a string with the specified format.

toDuration
Create a duration from the supplied string which is in the specified

format.

https://github.com/HowardHinnant/date

206 Balau core C++ library

Balau core C++ library 207

File utilities
Overview

This header provides user friendly file utility functions, defined within the Balau::Util::Files

namespace.

Quick start

#include <Balau/Util/Files.hpp>

The following functions are currently implemented. More information is available on the API

 page.documentation

Function name Description

copy Copy the contents of the source file into the destination file.

toLines Read all lines of text of the specified file into a string vector.

readToString Read the specified file into a string.

readToVector Read the specified file into a character vector.

208 Balau core C++ library

Balau core C++ library 209

Memory utilities
Overview

This header provides memory utility functions, defined within the Balau::Util::Memory

namespace.

Quick start

#include <Balau/Util/Memory.hpp>

The following utilities are currently implemented. More information is available on the API

 page.documentation

Pointer containers

These functions provide variadic conversions from a set of input arguments to a vector of

pointer containers, via a supplied transform function. Functions are available for shared and

unique pointer containers.

There are two versions of the functions. The first version works with a transform function that

transforms an argument into a single pointer. The second version works with a transform

function that transforms an argument into a vector or pointers.

These functions are quite specialised and specific to the Balau library's internal

implementation. For example, the function is used in the injectormakeSharedV

implementation in order to create the binding builders from each supplied configuration

object in the variadic call.createBindings

auto builders = Memory::makeSharedV<ApplicationConfiguration, Impl::BindingBuilderBase>(
 [] (const ApplicationConfiguration & conf) { return conf.createBuilders(); }
 , conf ...
);

These functions may however be useful when a similar variadic transform functionality is

required in application code.

210 Balau core C++ library

Function name Description

makeShared
Create a vector of shared pointers after transforming the arguments

(scalar transform version).

makeSharedV
Create a vector of shared pointers after transforming the arguments

(vector transform version).

makeUnique
Create a vector of unique pointers after transforming the arguments

(scalar transform version).

makeUniqueV
Create a vector of unique pointers after transforming the arguments

(vector transform version).

Balau core C++ library 211

Pretty printing
Overview

This header provides utilities for printing numeric values in different formats, defined within

the namespace.Balau::Util::PrettyPrint

Quick start

#include <Balau/Util/PrettyPrint.hpp>

The following pretty print functions are currently implemented. More information is available

on the page.API documentation

Function name Description

fixed Print the value in fixed notation.

scientific Print the value in scientific notation.

metricPrefix Print the value with a metric prefix.

binaryPrefix
Print the value with a binary prefix. This is similar to a metric prefix, but

uses 2^10 (1024) as the divisor.

byteValue
Returns a string containing the supplied byte value in terms of B/KB/MB

/GB etc.

duration Pretty print the duration.

printHexBytes Print the value as bytes in hexadecimal.

212 Balau core C++ library

Balau core C++ library 213

Random number generators
Overview

Convenience wrappers around the C++11 random number generator library.

The implementation is based around a single template class. ARandomNumberGenerator

set of aliases are provided for each of the random number generator configurations.

The defined random number configurations are given in the table towards the end of this

chapter.

Quick start

#include <Balau/Util/Random.hpp>

Construction

To create a , choose the configuration you require and supply theRandomNumberGenerator

boundaries within which the generator will generate numbers.

// Create a uniform double random number generator that will generate
// double precision floating point numbers between 0 and 10.
UniformDouble random(0, 10);

There is a second constructor available that takes an integer seed value in order to allow for

repeatability (useful for testing).

// Create a uniform double random number generator with a seed.
UniformDouble random(0, 10, 12345);

Usage

Once constructed, random numbers can be obtained from the generator by calling its

.operator ()

// Generate some random numbers.
double a = random();

 double b = random();
 double c = random();

Generator types

This section lists the different types of generated that are defined.

// Create a uniform double random number generator that will generate
// double precision floating point numbers between 0 and 10.

// Create a uniform double random number generator with a seed.

// Generate some random numbers.

214 Balau core C++ library

Uniform distribution

Name Description

UniformDouble
A uniform distribution, double precision floating point random

number generator.

UniformFloat
A uniform distribution, single precision floating point random

number generator.

UniformInt32
A uniform distribution, 32 bit signed integer floating point

random number generator.

UniformInt64
A uniform distribution, 64 bit signed integer floating point

random number generator.

UniformUInt32
A uniform distribution, 32 bit signed integer floating point

random number generator.

UniformUInt64
A uniform distribution, 64 bit signed integer floating point

random number generator.

Normal distribution

Name Description

NormalDouble
A normal distribution, double precision floating point random

number generator.

NormalFloat
A normal distribution, single precision floating point random

number generator.

Templated types

These templated aliases require the type to be specified. Most developers will not requireT

these.

Balau core C++ library 215

Name Description

UniformReal A uniform distribution, floating point random number generator.

UniformInt A uniform distribution, integer random number generator.

Normal A normal distribution random number generator.

LogNormal A log normal distribution random number generator.

Gamma A gamma distribution random number generator.

ChiSquared A chi squared distribution random number generator.

Cauchy A Cauchy distribution random number generator.

FisherF A Fisher F distribution random number generator.

StudentT A Student T distribution random number generator.

Binomial A discrete binomial distribution random number generator.

Geometric A geometric distribution random number generator.

NegativeBinomial A negative binomial distribution random number generator.

Poisson A Poisson distribution random number generator.

Exponential An exponential distribution random number generator.

Weibull A Weibull distribution random number generator.

ExtremeValue An extreme value distribution random number generator.

Discrete A discrete distribution random number generator.

PiecewiseConstant A piecewise constant distribution random number generator.

PiecewiseLinear A piecewise linear distribution random number generator.

Apart from the numeric template type, the use of the templated generators is the same as

the fully typed generators.

// Create a double precision Poisson random number generator.
Poisson<double> random(0, 10);

 double a = random();
 double b = random();
 double c = random();

// Create a double precision Poisson random number generator.

216 Balau core C++ library

Balau core C++ library 217

Stream utilities
Overview

This header provides user friendly stream utility functions, defined within the Balau::Util::

 namespace.Streams

Quick start

#include <Balau/Util/Streams.hpp>

The following functions are currently implemented. More information is available on the API

 page.documentation

Function name Description

consume
Consume all the data from the supplied input stream into the supplied

output stream.

readLinesToVector Read all lines of text from the supplied input stream into a vector.

218 Balau core C++ library

Balau core C++ library 219

String Utilities
Overview

This header provides user friendly UTF-8 and UTF-32 string utility functions, defined within

the namespace.Balau::Util::Strings

UTF-16 versions of the utilities are not current implemented. Pull requests with such new

functionality are welcome.

These utility functions provide more coarse grained functionality compared to that provided

by ICU, Boost, and the C++ standard library string manipulation calls.

The utilities use and return objects where possible. In order to supportstd::string_view

multiple string types, a two stage typename deduction / type conversion approach is used for

many of the functions.

Quick start

#include <Balau/Util/Strings.hpp>

The following utilities are currently implemented. More information is available on the API

 page.documentation

https://borasoftware.com/doc/balau/latest/api/structBalau_1_1Util_1_1Strings.html

Each function covers UTF-8 and UTF-32 encodings and is available in several forms.

Examination

Function name Description

startsWith Does the first string start with the second string/character/code point?

endsWith Does the first string end with the second string/character/code point?

contains Does the first string contain the second string/character/code point?

occurrences
How many non-overlapping occurrences of the second string/regular

expression are found in the first string?

equalsIgnoreCase Ignoring case, is the first string equal to the second string?

lineLengths
Given the supplied multi-line text string and an optional line break

regular expression, determine the lengths of the lines in bytes.

lastIndexOf
Get the character/code point position in the first string of the last index of

the second string.

codePointCount Count the number of code points in the supplied string.

220 Balau core C++ library

Mutation

Function name Description

toUpper Convert the string to uppercase.

toLower Convert the string to lowercase.

append
Appends count times the supplied character/code point to the supplied

string.

padLeft
Left pad the string up to the specified width in code points, using the

supplied character/code point.

padRight
Right pad the string up to the specified width in code points, using the

supplied character/code point.

trim Trim whitespace from the beginning and end of the string.

trimLeft Trim whitespace from the beginning of the string.

trimRight Trim whitespace from the end of the string.

replaceAll
Replace all occurrences of the specified string/regular expression with

the specified replacement.

Manipulation

Function name Description

join Join the strings together, separated by the supplied delimiter.

prefixSuffixJoin
Join the strings together, prefixing each string with the prefix and

suffixing each string with the suffix.

split
Split the string on each of the occurrences of the specified string/regular

expression delimiter.

Balau core C++ library 221

Vector utilities
Overview

This header provides user friendly utility functions, defined within the Balau::Util::Vectors

namespace.

Quick start

#include <Balau/Util/Vectors.hpp>

The following utilities are currently implemented. More information is available on the API

 page.documentation

Appending

Function name Description

append Appends the source vector to the destination vector.

pushBack Populate an existing vector via emplace back of multiple elements.

The function allows variadic emplace back to be performed in a single function.pushBack

Conversion

These functions convert vectors of characters to strings and strings to vectors of characters.

Function name Description

charsToString
Convert the characters in the supplied char/char16_t/char32_t vector to

a UTF-8/UTF-16/UTF-32 string.

toCharVector Convert the supplied UTF-8/UTF-32 string to a char/char32_t vector.

toStringVector
Convert the supplied vector to a vector of UTF-8 strings, by calling

 on each object.toString

toString32Vector
Convert the supplied vector to a vector of UTF-32 strings, by calling

 on each object.toString32

222 Balau core C++ library

Balau core C++ library 223

Miscellaneous utilities
Introduction

This chapter documents small, miscellaneous types and utilities that are provided in Balau.

Assert

#include <Balau/Dev/Assert.hpp>

The namespace class contains a set of runtime assertions used for developmentAssert

purposes. The assertions use the standard call.assert()

Enums

#include <Balau/Util/Enums.hpp>

The namespace class currently contains a single static method:Enums

///
/// Convert the strongly typed enum to its underlying integer.
///
template <typename E>

 static auto toUnderlying(E e) noexcept -> typename std::underlying_type<E>::type {
 return static_cast<typename std::underlying_type<E>::type>(e);
}

The method provides a clear indication in source code that the underlyingtoUnderlying

integer value of the enum class is being obtained.

Hashing

#include <Balau/Util/Hashing.hpp>

The class is a namespace class used to hold hashing functions. There are threeHashing

versions of each function, one accepting a , another accepting a , and a thirdFile string

accepting an .istream

The following hash algorithms are supported:

SHA-256;

SHA-3;

Keccak;

SHA-1;

///
/// Convert the strongly typed enum to its underlying integer.
///

224 Balau core C++ library

MD5;

CRC32.

Macros

#include <Balau/Util/Macros.hpp>

The header file contains some low level macros used in Balau.Macros.hpp

OnScopeExit

#include <Balau/Type/OnScropeExit.hpp>

#include <Balau/Type/MoveableOnScropeExit.hpp>

The two classes and provide style managementOnScopeExit MovableOnScopeExit RAII

containers. The version is movable out of a scope without triggeringMovableOnScopeExit

the stored function.

An instance of is created by supplying a function or lambda expression to theOnScopeExit

constructor. This function will be run from the destructor of the stack based object when the

enclosing scope exits.

// Example usage of OnScopeExit class.

{
 Balau::OnScopeExit cleanUp([this] () { runCleanup(); })

 } // runCleanup() will be run here.

One interesting property of the implementation is that instances mayMovableOnScopeExit

be moved out of the scope via the move constructor. This allows a MovableOnScopeExit

instance to be created inside a function and then returned to the caller on the stack, ready

for destruction when the caller's scope exits.

The and implementations are small classes, each classOnScopeExit MovableOnScopeExit

consisting of approximately 20 lines of code. Internally, the implementation isOnScopeExit

based on a stack based internal object and the std::function MovableOnScopeExit

implementation is based on a heap based internal object, managed inside a .std::unique_ptr

UUID

#include <Balau/Type/UUID.hpp>

// Example usage of OnScopeExit class.

// ... more code ...

// runCleanup() will be run here.

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

Balau core C++ library 225

The class provides a convenient API for generating and manipulating UUIDs.UUID

User

#include <Balau/Util/User.hpp>

The class is a namespace class destined for functions that provide information onUser

operating system users.

Currently, the class contains a single function that makes a bestUser getHomeDirectory

effort attempt at returning the user's home directory for each supported platform.

App

#include <Balau/Util/App.hpp>

The class is a namespace class destined for functions that provide general informationApp

for a running application.

The following functions are currently defined.

struct App {
 static File getUserApplicationDataDirectory(const std::string & appGroup, const std::string & appName);
 static File getGlobalApplicationDataDirectory(const std::string & appGroup, const std::string & appName);
 static File getUserApplicationConfigDirectory(const std::string & appGroup, const std::string & appName);
 static File getGlobalApplicationConfigDirectory(const std::string & appGroup, const std::string & appName);
 static File getApplicationRuntimeDataDirectory(const std::string & appGroup, const std::string & appName);
};

The and strings provide the application's group name and identificationappGroup appName

name. These are used in the construction of the directory paths. The paths returned from

these functions depend on the platform. Depending on the platform, the returned paths

depend on the program binary's location, the user's identification, ${XDG_DATA_HOME},

${HOME}, ${XDG_CONFIG_HOME}, and/or ${XDG_RUNTIME_DIR} environment variables,

%USERPROFILE%, %HOMEDRIVE%, %HOMEPATH%, and/or GetTempPath() on

Windows. See the API documentation for more details.

Note that these functions are not yet implemented for platforms other than Unix like

platforms. Pull requests for other platforms are welcome.

226 Balau core C++ library

Balau core C++ library 227

COMMUNITY

228 Balau core C++ library

Building Balau
This chapter discusses the preparatory steps, configuring, and building Balau.

Defaults

CMAKE_PREFIX_PATH

If the is not set, the Balau CMakeLists.txt file defaults it to the CMAKE_PREFIX_PATH

 folder. This setup allows the ICU, Boost, and optionally libzip dependencies to${HOME}/usr

be installed in , to be picked up during CMake configuration automatically.${HOME}/usr

If the dependencies are located elsewhere, the should be set, asCMAKE_PREFIX_PATH

discussed in the section below.CMake variables

CMAKE_INSTALL_PREFIX

If the is not set, the Balau CMakeLists.txt file defaults it to the CMAKE_INSTALL_PREFIX

 folder. If the library should be installed elsewhere (such as to), the ${HOME}/usr /usr

 should be set, as discussed in the sectionCMAKE_INSTALL_PREFIX CMake variables

below.

Options

Balau contains a number of optional components that can be enabled/disabled during

CMake configuration.

The currently available options are detailed in the table below.

Option Default Description

BALAU_ENABLE_ZLIB ON
Enable ZLib library wrappers for gzip compression

support.

BALAU_ENABLE_ZIP ON Enable LibZip library wrappers (Zipper and Unzipper).

BALAU_ENABLE_CURL ON Enable use of Curl library (email sending web app).

BALAU_ENABLE_HTTP ON
Enable use of HTTP components (disabled for Boost

< 1.68.0).

By default, ZLib and LibZip compression components are enabled, and the Curl components

are not. Enabled components will require the corresponding library development files to be

present during the build, as described in the dependencies section below.

Balau core C++ library 229

Dependencies

In addition to the C++ standard library, Balau relies on two third party libraries and three

utility libraries.

The first dependency is , which provides Unicode support. ICU version is theICU 60.2

currently specified version in the CMakeLists.txt file.

The second dependency is the . Boost version is the currently specifiedBoost library 1.68.0

version in the CMakeLists.txt file.

The three utility library dependencies are , and . These libraries should bezlib libzip curl

installed via your distribution's standard packaging system.

The only other dependencies used are standard dependencies on each supported platform.

Utility libraries

Debian/Ubuntu

The following command is for Ubuntu 18.04 and OpenSSL.

sudo apt install zlib1g-dev libzip-dev libcurl4-openssl-dev libssl-dev

RPM based distributions

Fedora 28 / 29

sudo yum install zlib-devel openssl-devel libcurl-devel libzip-devel

RHEL CentOS

Balau can be built on RHEL5 / CentOS v5 of later via the developer toolset 6 or later.

sudo yum install zlib-devel openssl-devel libcurl-devel

The supplied version of libzip on these distributions is . A recent version of libzip must0.10.1

thus be compiled and installed. The following commands will download, build, and install

libzip version into the directory (this directory will be referenced later via 1.5.1 ${HOME}/usr

).CMAKE_PREFIX_PATH

http://site.icu-project.org
http://www.boost.org

230 Balau core C++ library

mkdir Libs
cd Libs
wget https://libzip.org/download/libzip-1.5.1.tar.gz
tar zxvf libzip-1.5.1.tar.gz
cd libzip-1.5.1
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=${HOME}/usr ..
make
make install

To install the developer toolset on CentOS, the command can be used. DTS7 may beSCL

installed via the following command:

scl enable devtoolset-7 bash

RHEL / CentOS also ship with old versions of CMake (). As Balau requires at least2.8

CMake version , a suitable build of CMake must be available. Please refer to the 3.10.2

 website for more information.CMake

ICU

Linux

Download the ICU version 60.2 sources .here

To configure the ICU sources on Linux, unzip the sources and run the following commands

in the unzipped ICU source directory. If you intend to use a different install prefix that the

Balau default, the option should be set to the required path.--prefix

cd /path/to/icu/code
cd source

Replace ${HOME}/usr to alternative path if required.
./runConfigureICU Linux --enable-static \
 --disable-shared \
 --disable-renaming \
 --prefix=${HOME}/usr

Then add the necessary ICU defines in the file. Thesesource/common/unicode/uconfig.h

additionally configure ICU's build.

https://cmake.org/
http://download.icu-project.org/files/icu4c/60.2/icu4c-60_2-src.tgz

Balau core C++ library 231

#define U_USING_ICU_NAMESPACE 1
#define UNISTR_FROM_CHAR_EXPLICIT explicit
#define UNISTR_FROM_STRING_EXPLICIT explicit
#define U_NO_DEFAULT_INCLUDE_UTF_HEADERS 1
#define U_HIDE_OBSOLETE_UTF_OLD_H 1
#define ICU_NO_USER_DATA_OVERRIDE 1
#define U_DISABLE_RENAMING 1

#define U_CHARSET_IS_UTF8 1

Then build and install ICU.

make CXXFLAGS='-std=c++17 -g -o2 -fPIC' -j4
make install

Windows

This section will be filled in when the Windows port has been completed.

Boost

Linux

Download the Boost version 1.68.0 sources .here

To configure the Boost sources on Linux, unzip the sources and run the following commands

in the unzipped Boost source directory. If you intend to use different install prefixes than the

Balau default, the and options should be set to the required path.--prefix --with-icu

Replace ${HOME}/usr occurrences to alternative paths if required.
./bootstrap.sh --with-icu=${HOME}/usr --prefix=${HOME}/usr

Then build and install Boost.

./b2 -j4

./b2 install

Windows

This section will be filled in when the Windows port has been completed.

CMake variables

Balau relies on two CMake variables in order to find its dependencies and to specify where

to install itself. These two variables may optionally be set before building the library.

// Linux/OSx platforms also use:

https://dl.bintray.com/boostorg/release/1.68.0/source/boost_1_68_0.tar.bz2

232 Balau core C++ library

If you use the default Balau installation location (), both these variables will${HOME}/usr

default to this. Otherwise, these variables must be set before building the library.

The exact method for specifying these CMake variables depends on whether you use the

command line or an IDE. Only the command line technique is covered in the build steps

here. For IDEs that support CMake, these are typically set from within the settings

/preferences of the IDE. Refer to the specific IDE's documentation for information.

CMAKE_PREFIX_PATH

This CMake variable specifies a list of directories where dependencies may be found. More

information is available on the CMake documentation .here

CMAKE_INSTALL_PREFIX

This CMake variable specifies the installation prefix into which the Balau library will be

installed. More information is available on the CMake documentation .here

Environment variables

The Balau test application uses a number of environment variables in the unit tests,

imported via the CMakeLists.txt file. These environment variables are optional. If they are

not defined, the unit tests that require them will be disabled.

Refer to the CMakeLists.txt file for details on each environment variable if you wish to run

the associated unit tests.

Building Balau

Building can be achieved either via the command line or from within an IDE that supports the

CMake build system. Building and installing via the command line is covered in this

document.

Linux

Open a command prompt and prepare the build with the following commands.

cd path/to/projects
git clone https://github.com/borasoftware/balau.git
cd path/to/balau/code
mkdir build-debug
cd build-debug

If you are using the default prefix path and install prefix, execute the following commands.

https://cmake.org/cmake/help/v3.6/variable/CMAKE_PREFIX_PATH.html
https://cmake.org/cmake/help/v3.6/variable/CMAKE_INSTALL_PREFIX.html

Balau core C++ library 233

cmake -DCMAKE_BUILD_TYPE=Debug ..
make -j 4
make install

If you are using a non-default prefix path and/or a non-default install prefix, run the following

commands, replacing with the installation locations of the dependencies you${DEPS}

configured in the previous steps, and with the installation prefix where${BALAU_PREFIX}

you wish to install the Balau library.

cmake -DCMAKE_PREFIX_PATH=${DEPS} \
 -DCMAKE_INSTALL_PREFIX=${BALAU_PREFIX} \
 -DCMAKE_BUILD_TYPE=Debug \
 ..

make -j 4
make install

The above set of commands:

creates an out of source build directory ;build-debug

configures CMake;

builds the library;

installs the library to ${BALAU_PREFIX}.

If you wish to have a release build, set to instead.CMAKE_BUILD_TYPE Release

Windows

This section will be filled in when the Windows port has been completed.

Linking

In order to link to the Balau library, your file needs to be modified with theCMakeLists.txt

Balau library and its dependencies.

These instructions have been written in order to use statically linked libraries. On some

platforms, the ordering of the entries in the file is important, in order that theCMakeLists.txt

linker may resolve the dependencies correctly.

The following CMake commands will ensure all libraries are found and linked correctly.

234 Balau core C++ library

######################## BALAU ########################

 find_package(Balau 2019.7.1 REQUIRED)
 message(STATUS "Balau include dirs: ${Balau_INCLUDE_DIRS}")
 message(STATUS "Balau library: ${Balau_LIBRARY}")

 include_directories(BEFORE ${Balau_INCLUDE_DIRS})
 set(ALL_LIBS ${ALL_LIBS} ${Balau_LIBRARY})

################### BOOST LIBRARIES ###################

 set(Boost_DETAILED_FAILURE_MSG ON)
 set(Boost_USE_STATIC_LIBS ON)
 set(Boost_USE_MULTITHREADED ON)
 set(Boost_USE_STATIC_RUNTIME OFF)

Add any other Boost libraries that you may require.
 find_package(Boost 1.68.0 REQUIRED COMPONENTS thread chrono date_time filesystem system serialization iostreams)

include_directories(${Boost_INCLUDE_DIRS})
 set(ALL_LIBS ${ALL_LIBS} ${Boost_LIBRARIES})

 message(STATUS "Boost include dirs: ${Boost_INCLUDE_DIRS}")

######################### ICU #########################

 find_package(ICU 60.2 REQUIRED COMPONENTS i18n uc data)
include_directories(${ICU_INCLUDE_DIRS})

 set(ALL_LIBS ${ALL_LIBS} ${ICU_LIBRARIES})
 message(STATUS "ICU include dirs: ${ICU_INCLUDE_DIRS}")

Balau core C++ library 235

Contributing
Overview

Contributions to the Balau library are welcome. The easiest way to contribute is to create a

fork of the library's repository and submit pull requests for new or enhanced features.

The Balau library has been conceived for two distinct aims:

to provide a foundation for the development of Unicode aware C++ software

applications that have a dependency injection based architecture, have complex

logging requirements, and that will be developed with a test driven development

methodology;

to provide a simple and intuitive API for core C++ components and utilities.

Contributions to the injector, logging framework, and test runner are likely to be incremental

improvements and bug fixes. Contributions of new components and improvements to other

existing components and utilities are open to our imagination and creativity.

Planned features

The general aim of the library's development is reactive rather than proactive. If a useful

feature for enterprise quality C++ application development is missing, convoluted, or lacking

in features in the C++ standard library or Boost libraries, then the feature is a good

candidate for development and inclusion in Balau.

If an existing feature in the standard library or Boost exists and is designed as low level, fine

grained, or does not have a straight forward API, then it would be useful to develop a

corresponding Balau feature with a simple and intuitive API, as a high level facade of the

standard library or Boost feature.

Consequently, there is no complex plan of planned features to be added to the library. The

current list of planned features can be seen on the page.planned features

License

Balau is licensed under the . All contributionsBoost Software License - Version 1.0 - 2003

will need to be licensed under the same license or under a license that allows relicensing

under the Boost license.

Repository

The main repository is hosted at .https://github.com/borasoftware/balau

https://github.com/borasoftware/balau

236 Balau core C++ library

Guidelines

The following guidelines may help with contributions. In addition to avoiding defects, the aim

is to maintain an easy to understand code base in order to facilitate with rapid application

development.

General

Classes of appreciable complexity are normally contained in their own header plus

optional body file. Smaller classes should share a header with other similar classes /

the complex class that uses them.

Implementation specific classes are placed in files inside an sub-folder next to theImpl

main class(es), and namespaced within an inner sub-namespace. The injectorImpl

and logging system are examples of this arrangement.

Logging in Balau library components and functions should be restricted to code in

body files only. This allows an incomplete declaration to be made for the classLogger

in header files, thereby simplifying the include order in application code.

Before creating a pull request, the code should be formatted to the Balau code style

guidelines provided below.

Testing

All anticipated uses cases of the new or enhanced feature should be tested by adding

or revising the feature's test cases in the folder.src/test

When a modification is made or new code is introduced and the tests are written, the

test application should be run with memcheck and helgrind tools, in order toValgrind

verify that there are no memory and threading issues. If there are memory and/or

threading issues, these should be debugged and resolved before raising a pull request.

After completing the modification or new feature, the Balau test suite should be

verified to pass in mode in addition to mode.release debug

Strings

All features that use or manipulate objects should be designed to functionstd::string

correctly with UTF-8 text, unless there is a valid reason not to do so (i.e. the data in

the is not UTF-8 text and/or is clearly processing pure bytes of information).std::string

Such exceptions should be documented as being so, otherwise it will be assumed that

the bytes within a object are UTF-8.std::string

Balau core C++ library 237

The character type and associated string and stream types must not be usedwchar_t

anywhere in the library.

UTF-8 character processing is supported by the ICU wrapper functions found within

the namespace.Balau::Character

When developing a utility function or component that manipulates UTF-8 strings, an

equivalent UTF-32 version should normally be created alongside the UTF-8 version.

When creating a function that accepts one or more const strings, string views should

be used instead of std strings.

Beware of the method. Do not use this method unless you arestd::string_view::data()

100% sure null pointer character array termination is not required in the program logic

that uses the data.

Beware of returning from methods. Returning from astd::string_view std::string_view

method should only be done when the lifetime of the referenced string data is

guaranteed to outlive the string view being returned.

Const correctness

All global variables, member variables, and local variables should be made const

unless there is a reason to make them non-const.

All member functions should be made unless there is a reason to make themconst

non-const.

Concurrency

When developing code that relies on multi-threaded execution and inter-thread data

sharing, the developed code should use standard C++ 11 memory ordering features,

principally the atomic operations library. Mindful use of maystd::memory_order

improve performance on some platforms, but is usually not necessary, especially for

the principal target platform.x86-64

Memory management

Manual use of memory allocation via the operator should be avoided, except indelete

exceptional circumstances where the code itself is acting as a pointer container that

provides object lifetime management. Otherwise, the C++11 standard library pointer

containers should be used for heap based objects.

Use of C++11 move semantics should be preferred to copying. Copying should be

limited to cases where the caller must retain ownership of the passed argument. When

238 Balau core C++ library

copying is used, a pass by value and move approach should be used in preference to

pass by reference and copy.

Templates

Unnecessarily complex templated code should normally be avoided. Complex

templated code should be used when the resulting solution is more elegant and/or the

resulting public API is more simple than it would be if an alternative approach were

taken AND quick start documentation for common use cases is provided. Our aim is to

provide components and utilities for rapid enterprise quality application development.

Development teams working on enterprise software applications do not normally have

enough time for in-depth studies of the inner workings of a complexly templated

component in order to fulfil a simple use case.

Variadic functions and methods should always be implemented via C++11 parameter

packs. Fold expressions may assist in the simplification of otherwise complex variadic

tasks.

Macros

The use of macros should be avoided, unless there is no other way of implementing a

feature (examples include the file/line logging macros and the injector class macros).

The use of conditional compilation macros should be avoided, unless there is no other

way of implementing a feature. If some complex conditional compilation is required for

resolving differences across platforms, put the code in platform specific headers and

include them appropriately in the main source code file. The exception to this is the

use of the macro, which is used to enable code in debug builds.BALAU_DEBUG

Documentation

Public classes, functions, and methods should be documented with triple forward

slash documentation entries. Public items that are not documented will not be///

added to the API documentation. Each entry should have a single line description, a

line break, then a more in-depth description. Parameters, exceptions, and return

variables that are non-obvious should be documented with @tparam, @param,

@throws, and @return entries. As Balau is a software library, users rely on the API

documentation to use it, and consequently the API documentation is as essential as

the code itself.

Permanent block style /* */ code comments should never be used, as they complicate

temporary block commenting/uncommenting.

Balau core C++ library 239

Protected and private classes, functions, and methods of any complexity should be

documented with a brief, usually single line double forward slash comment that//

indicates the goal of the entry. Triple forward slash documentation entries should///

not be used unless the information for the item needs to appear in the API

documentation.

Code comments are generally unnecessary, unless a code fragment is unusually

difficult to understand. In this case, a line or two of comments clarifying the goal of the

fragment is useful.

Author or version information should not be included in source code files. Detailed

author information is available by examining the source code repository (git-blame).

When a new class or feature is developed or an existing class or feature is enhanced,

a corresponding BDML documentation page should be created or revised with the

new or revised usage. The BDML documentation pages are found in the src/doc

 folder. As the documentation is XML based, it can be written during/manual

development of the code and committed in the same change-sets as the code. Writing

BDML documentation can be performed during compilation pauses. BDML

documentation should follow the standard structure of , (startingOverview Quick start

with the header(s) to include), optional detailed documentation sections, and optional

 section.Design

Code style

The aim of the code style used in the Balau library is maximum readability. The following

sub-sections discuss aspects of the code style.

Indentation

Balau code style uses indenting. This allows developers to choose the tab sizesmart tab

they desire in their source code editor, whilst maintaining correct alignment of vertically

aligned items. Indentation size is thus not specified in this code style.

Files

Lines should be limited to 120 characters, when viewed with a tab size of 4 characters.

Comment lines should normally be limited to approximately 80 characters.

Newlines in files must be , not or . Files should end with a newline. WhitespaceLF CRLF CR

should be removed at the ends of lines (configure the IDE to do it for you on saving).

Files should be named for header files and for body"([A-Z][a-z]*)+.hpp" "([A-Z][a-z]*)+.cpp"

files.

240 Balau core C++ library

Files should be grouped into a hierarchy of folders, the names of which are normally the

same as the local namespace of the files contained within. The folder structure should

normally follow the namespace structure.

Headers should use include barriers, the names of which exactly follow the names in the

folder hierarchy in which the file is situated. The definition should not be#pragma once

used. This will be revised when C++20 modules are standardized.

Includes in header files should be avoided when possible (use incomplete declarations).

Otherwise, the full include path of non test header files should be used between < and >

tokens.

// Example include in header file.
#include <Balau/Network/Http/Server/HttpWebApp.hpp>

Identifiers

Identifiers should be styled according to the following rules.

Namespace, class, enum, and enum entry names should be upper camel case.

Function, method, field names, and local variables should be lower camel case.

Public macros (macros to be used in end application code) should be uppercase

camel case.

Private macros (macros to be used in other Balau macros) should be uppercase

camel case and start with an underscore.

Underscores should not be used apart from starting private macro identifiers and as a

suffix for constructor parameters that set similarly named class fields in constructor

initialisation lists.

Identifiers other than local variables should be as short as possible whilst providing

adequate information on their goals and avoiding abbreviations. It is fine to use long

identifiers if there is no other way of providing sufficient information, but this should be

the case for a minority of identifiers.

Local variables, especially those used for temporary counters and the like, should be

short, often a single letter.

Metadata naming conventions (type, kind) must not be used (use an IDE that indicates

identifier semantics for you). Semantic apps identifiers should mostly be avoided, apart for

template parameter identifiers.

// Example include in header file.

Balau core C++ library 241

Spacing

Spacing of source code tokens aims to maximise visual grouping of related tokens, whilst

maintaining a compact representation. The spacing rules are specified as a subtractive list.

All tokens should be surrounded by a space, with the exception of the following, which do

not have space before and/or after them:

after '(', '[', and before ']', ')';

after '<' and before '>' when these characters are template header tokens;

before '(' and after ')' when these characters are function call parameter list

parentheses;

after '::';

before '::', unless the character pair references the global scope;

between , , and tokens and their associated ':';public protected private

between 'case' and its associated ':' in a switch statement;

before ',' and ';'

after '*' and '&' when these characters are de-reference and address-of tokens;

after '+' and '-' when these characters are unary operators.

Braces

Opening '{' braces are placed on the same line as the associated statement.

Single line code blocks should not be used.

Single line code blocks must use braces.

// Single line code block in if statement.
if (i < 0) {
 foo();
}

Case blocks within switch statements should also use braces.

// Single line code block in if statement.

242 Balau core C++ library

// Switch statement case blocks.
switch (type) {
 case Type::Simple: {
 foo();
 break;
 }

 case Type::Composite: {
 foo2();
 break;
 }

 default: {
 throwError();
 break;
 }
}

Horizontal/vertical

This principal maximises the readability of parameter lists, enum entries, argument lists, and

other delimited lists found in the source code.

The general idea is that it is easiest to read a delimited list when it is presented either in a

single line or as a vertically aligned list. The choice of the two approaches is dictated by the

length of the line when the delimited list is presented on a single line. If a single line fits

within the 120 character limit, a single line is chosen. Otherwise, a vertically aligned list is

chosen.

The following extracts illustrate this approach on method parameter lists.

// From HttpWebApp class.

 public: virtual void handleGetRequest(HttpSession & session, const Request & request) = 0;

In this example, the method's header fits on a single line without overrunning the 120

character limit.

// From HttpServer class.

 public: HttpServer(std::shared_ptr<Injector> injector,
 const std::string & serverIdentification,
 const TCP::endpoint & endpoint,
 std::string threadNamePrefix_,
 size_t workerCount_,
 std::shared_ptr<HttpWebApp> httpHandler,
 std::shared_ptr<WsWebApp> wsHandler,
 std::shared_ptr<MimeTypes> mimeTypes = MimeTypes::defaultMimeTypes);

// Switch statement case blocks.

// From HttpWebApp class.

// From HttpServer class.

Balau core C++ library 243

In this example, the method's header would overrun the 120 character limit if it were

presented on a single line, so the parameter list is arranged vertically aligned.

Delimiters

With the exception of commas in function and method parameter lists (as illustrated in the

previous code example), the delimiters in a vertically aligned, delimiter separated list are

each considered to belong to the following item in the list.

For example, the commas in the vertically delimited superclass call in the following code

extract lead the arguments.

protected: MultiProcessTestRunnerExecutor(CompositeWriter & writer_,
 bool useNamespaces_,
 GroupedTestCaseMap & testCases,
 unsigned int concurrencyLevel_)
 : TestRunnerExecutor(
 std::unique_ptr<TestResultQueue>(new MultiProcessTestResultQueue)
 , writer_
 , useNamespaces_
 , testCases
 , true
)
 , concurrencyLevel(concurrencyLevel_)
 , sharedMemoryNamePrefix(createSharedMemoryNamePrefix()) {}

This code extract also illustrates comma delimited field initialisation.

Closing brackets

When a vertically aligned list is used within opening and closing brackets/parentheses, the

closing bracket/parenthesis is placed on a newline. An example of this is shown in the

previous code extract. The following is an example with two levels.

tests.emplace_back(
 FlattenedTestCase(
 testIndex
 , executionModels
 , preText
 , ""
 , testCase.name
 , testCase.group
 , std::move(testCase.method)
)
);

244 Balau core C++ library

Visibility prefixes

The visibility prefixes are the , , and tokens used in class declarations.public protected private

In Balau sources, class declarations use explicit visibility prefixes on all declaration items

(fields, methods, inner class/enum declarations). This provides physically collocated visibility

information for all items, avoiding the need to search upwards in the source code for the

visibility of a class item and declaring that the item is part of a class declaration.

Balau core C++ library 245

Known issues
The following issues are outstanding.

Issue Description

Possible

memory leak

in OpenSSL 1.1

Valgrind is reporting a memory leak in Boost Asio . The call SSL::context

stack ends with a malloc call initiated by the OpenSSL call

 (tested OpenSSL version 1.1). However, since version ERR_get_state

1.1, OpenSSL is reported to clean up all thread local allocations itself.

246 Balau core C++ library

Balau core C++ library 247

Planned features
The following features and enhancements are currently planned.

Platforms

Port to Windows 7/10.

General

File system

Migrate from to the standard library replacement once<boost/filesystem.hpp> <filesystem>

there is widespread support.

Testing

Improve test coverage and increase use case tests on each component (explicitly test

functionality that is used elsewhere but not directly tested).

Error reporting

Improve exception messages and information provided at exception throwing sites.

Components

Application

Injector

Investigate the viability of implementing automatic constructor selection, allowing

injectable implementation classes to be written without the need for an injector macro.

Improve dependency tree cycle error reporting.

Improve dependency tree pretty printing.

Improve the injector unit tests.

Implement parallel construction of eager singletons, based on the dependency tree

created during the validation phase of injector construction.

[non functional] Consider the possibility of compacting the injector macro

implementations via some macro twiddling.

248 Balau core C++ library

Environment

Add documentation describing how to construct custom type specification hierarchies

from existing type specification files.

Consider the implementation of composite property arrays via multiple specification of

the same composite property.

Create a web application that serves environment configuration property

specifications, given a list of type specification source files.

Command line parser

Improve the help text printer.

Concurrent

Determine how to add processing forking simulation for the Windows 7/10 platform

and add the functionality to the class.Fork

Determine which other useful (high level API) concurrent data structures are not

available from the standard library / Boost libraries and implement.

Container

Add more search algorithms to .ObjectTrie

Add an efficient single process blocking queue implementation.

Determine which other useful (high level API) containers are not available from the

standard library / Boost libraries and implement.

Lang

Extend the parser utilities classes to support incremental parsing.

Logging

Create a threaded writer in order to offload writing to another thread.

Network

[non functional] Consider whether to migrate away from libcurl (i.e. write C++ SMTP

handling and other handlers).

Balau core C++ library 249

Add features to the HTTP and HTTPS clients (start with chunked transfer and

asynchronous API, redirects).

Make HTTP server keep-alive configurable.

Add TLS support to the HTTP server.

Improve/add other features to the HTTP server (chunked transfer, etc.).

Consider which other web application handlers would be useful.

Analyse the performance of the HTTP server and determine how to improve

performance.

Create a more efficient regular expression algorithm/data structure for the redirecting

HTTP web application.

Resource

Add more resource types.

[non functional] Improve the resource documentation in the developer manual.

System

Add more features to the clock API and the system clock implementation.

Testing

Add test case serialisation via dependency keys.

Integrate with common C++ unit test running frameworks.

Type

Clean up / improve templated (typename AllocatorT) versions of the toString,

toString16, and toString32 functions.

Migrate fromString numeric conversions from c-string type etc. to C++17 strtol

 functions. This will avoid the need to allocate strings from string views.from_chars

Util

Compression

GZip

Add functions that compress to .std::vector<char>

250 Balau core C++ library

Add functions that compress to .std::ostream

Add functions that uncompress from a .std::vector<char>

Add functions that uncompress from a .std::istream

Zipper/Unzipper

Make the zip classes more feature complete.

Balau core C++ library 251

1.

2.

3.

Reporting bugs
The Balau library is in active development. Although care has been taken to define test

cases for a variety of use cases for each component, it is possible that an untested use case

may have a defect.

The proposed procedure for reporting and fixing defects is as follows.

Create one or more Balau test cases for the defect. All defect reports should include at

least one test case that reproduces the defect. One option to achieve this is to create

your own fork of the library and add your test case to your repository.

Either: report the defect on the main repository issue page ;here

Or: fix the defect in your own fork and submit a pull request to merge it to the main

repository.

https://github.com/borasoftware/balau/issues

252 Balau core C++ library

Balau core C++ library 253

	Balau core C++ library
	Overview
	Links
	Intended audience
	Themes
	Documentation pages
	Developer manual
	API documentation

	Dependencies
	Application structure
	License
	Supported platforms
	C++ version
	Operating systems
	CPU architectures

	Building
	Contributing

	APPLICATION
	Injector
	Overview
	Introduction
	Dependency injection
	Balau injector

	Quick start
	Application configuration
	Environment configuration
	Injection macros
	Injector usage
	Child injectors

	Configuration
	Injector configuration
	Reference bindings
	Const bindings

	Injectable classes
	Inject-construct macros
	Inject only macros
	Inject types macros

	Instantiation
	Injector
	Instances
	Const bindings
	Const promotion
	Weak promotion

	Custom deleters
	Unique custom deletion
	Shared custom deletion

	Injector hierarchies
	Child injector creation
	Prototype child injectors

	Injector callbacks
	Standard callbacks
	Singleton callback

	Cyclic dependencies
	Configuration cycles
	Explicitly managed cycles
	Injecting the injector
	Injector cycles

	Configuration testing
	Root injectors
	Child injectors
	Logging

	Design
	Overview
	Background
	Meta-design
	Design
	Meta-types
	Const promotions
	Performance
	Planned C++20 features

	Environment configuration
	Overview
	Introduction
	Usage patterns

	Quick start
	Properties
	Hard wired specifications
	IDL based specifications
	Mixed specifications
	Default values
	Application creation
	Injector
	Application
	Credentials

	Property type IDL
	Configuration cascading
	Example configuration
	Design
	Overview
	Background
	Requirements
	File format
	Specification files
	Value files

	Configuration cascading
	No required properties
	Overview
	Analysis
	Alternatives

	Logger
	Overview
	Quick start
	Logging messages
	Logger references
	Logging configuration

	Usage
	Configuration
	Logger instances
	Startup and shutdown
	Logging messages
	Logging namespaces

	Configuration file
	Overview
	Configuration macros
	The date placeholder
	Basic usage
	Date options

	Configuration options
	Logging level
	Format specification
	Flush
	Stream specifications

	Logging stream plugins
	Design
	Overview
	Concurrency

	Test runner
	Overview
	Quick start
	Test groups
	Test application
	Selecting tests
	Execution models

	Defining tests
	Test groups
	Setup and teardown

	Assertions
	Comparisons
	Exceptions
	Renderers

	Logging
	Test output
	Test logging
	Test reports

	Test utilities
	Network

	Test application
	Main function
	Selecting tests
	Model selection
	Execution models
	Single threaded
	Multi-threaded
	Worker process
	Process per test
	Performance

	CI configuration

	Characters and strings
	Overview
	String types
	Character utilities
	Classification
	Iteration
	Mutation

	Universal to-string
	Overview
	Signatures
	Usage
	Container to-string
	Parameter pack to-string
	To-string template class
	Custom allocation

	Universal from-string
	Signatures
	Usage
	From-string template class

	Command line parser
	Overview
	Quick start
	Style
	Configuration
	Retrieving data
	Help text

	Resources
	Overview
	Quick start
	URIs
	Resources

	URI classes
	Resource classes
	Recursive iterators
	Custom resources

	CONTAINERS
	ArrayBlockingQueue
	Overview
	Quick start
	Concurrency

	DependencyGraph
	Overview
	Quick start
	Construction
	Population
	Querying

	Concurrency

	ObjectTrie
	Overview
	Quick start
	Construction
	Trie nodes
	Searching
	Find
	FindNearest
	FindNearestLeaf

	Iteration
	Depth first
	Breadth first

	Cascading

	Fluent build API

	SharedMemoryQueue
	Overview
	Quick start
	Create
	Open or create
	Open
	Usage

	Concurrency
	Use cases
	Forked processes
	Independent processes

	SynchronizedQueue
	Overview
	Quick start
	Concurrency

	CONCURRENT
	CyclicBarrier
	Overview
	Quick start

	Fork
	Overview
	Quick start
	Forking
	Termination

	Semaphore
	Overview
	Quick start

	SharedMemoryObject
	Overview
	Quick start
	Forked processes
	Independent processes

	LANG
	Parsing utilities
	Overview
	Approach
	Architecture
	Scanned tokens
	Scanner Api
	Random access
	Iteration

	Scanning
	Parsing
	Classes

	Hierarchical properties
	Overview
	Quick start
	Format
	Parsing
	Visiting

	Hierarchical format
	Classes
	Data structures
	Grammar
	Notation
	Whitespace
	Explicit non-terminals
	Implicit non-terminals
	Terminals

	NETWORK
	HTTP client
	Overview
	Quick start
	Construction
	Usage

	HTTP server
	Overview
	Quick start
	Hardwired
	Injected

	Configuration
	Main configuration
	Credentials management

	HTTP web applications
	Overview
	Framework
	Creation
	HTTP session
	Client session
	Request object
	Request variables
	Configuration

	Web applications
	File server
	Email sender
	Redirector
	Canned
	Failing

	Routing

	WebSocket app framework
	Overview
	Quick start

	SYSTEM
	Clock
	Overview
	Quick start
	Clock binding
	Clock API

	Sleep utilities
	Overview
	Quick start

	Thread naming
	Overview
	Quick start

	UTIL
	Compression utilities
	Overview
	Quick start
	Gzip utilities
	Zipper and Unzipper

	Date-time utilities
	Overview
	Quick start

	File utilities
	Overview
	Quick start

	Memory utilities
	Overview
	Quick start
	Pointer containers

	Pretty printing
	Overview
	Quick start

	Random number generators
	Overview
	Quick start
	Construction
	Usage

	Generator types
	Uniform distribution
	Normal distribution
	Templated types

	Stream utilities
	Overview
	Quick start

	String Utilities
	Overview
	Quick start
	Examination
	Mutation
	Manipulation

	Vector utilities
	Overview
	Quick start
	Appending
	Conversion

	Miscellaneous utilities
	Introduction
	Assert
	Enums
	Hashing
	Macros
	OnScopeExit
	UUID
	User
	App

	COMMUNITY
	Building Balau
	Defaults
	CMAKE_PREFIX_PATH
	CMAKE_INSTALL_PREFIX

	Options
	Dependencies
	Utility libraries
	Debian/Ubuntu
	RPM based distributions

	ICU
	Linux
	Windows

	Boost
	Linux
	Windows

	CMake variables
	CMAKE_PREFIX_PATH
	CMAKE_INSTALL_PREFIX

	Environment variables
	Building Balau
	Linux
	Windows

	Linking

	Contributing
	Overview
	Planned features
	License
	Repository
	Guidelines
	General
	Testing
	Strings
	Const correctness
	Concurrency
	Memory management
	Templates
	Macros
	Documentation

	Code style
	Indentation
	Files
	Identifiers
	Spacing
	Braces
	Horizontal/vertical
	Delimiters
	Closing brackets

	Visibility prefixes

	Known issues
	Planned features
	Platforms
	General
	File system
	Testing
	Error reporting

	Components
	Application
	Injector
	Environment
	Command line parser

	Concurrent
	Container
	Lang
	Logging
	Network
	Resource
	System
	Testing
	Type
	Util
	Compression

	Reporting bugs

